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Ideally: 
Learn Causality from Raw Video 
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Inference Using Learned Causal Structure 

• Answer why events occurred  
 

• Joint STC: Infer misdetections and hidden objects/actions 
 

• Infer triggers, goals, and intents 
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a) Input: Video b) Event Parsing c) STC-Parsing d) Inference Over Time 
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But… 

OBSERVATION CAUSALITY 

(generally) 
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SO…WHERE ARE WE NOW? 
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Vision Research and Causal Knowledge 

• Use pre-specified causal relationships for action detection 
– E.g., PADS (Albanese, et al. 2010) 

– Model Newtonian mechanics (Mann, Jepson, and Siskind 1997) 

 

• Use causal measures to aid action detection 
– E.g., Prabhakar, et al. 2010 

 

• Use infant perceptions of motion to learn causality 
– Using cognitive science (Brand 1997) 

 

• Needed: Learn causality from video, integrating ST learning 
strategies at pixel level 
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Causality and Video Data: Often Disjoint 

• Learning Bayesian networks  
– Constraint satisfaction (Pearl 2009)  

– Bayesian formulations (Heckerman 1995) 

– Intractable on vision sensors 

 

• Commonsense reasoning (Mueller 2006) – first order logic.   
– Do not allow for ambiguity/probabilistic solutions 

 

• MLNs (Richardson and Domingos 2006) 
– Intractable 

– Used for action detection (Tran and Davis 2008) 

• KB formulas not learned 
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MOVING FORWARD: OUR 
PROPOSED SOLUTION 
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 Cognitive Science as a Gateway:  
Perceptual Causality 

• Causal Induction from Observation in Infancy 
– Agentive actions are causes (Saxe, Tenenbaum, and Carey 2005) 

 

 
 

– Co-occurrence of events and effects (Griffiths and Tenenbaum 2005) 

 

 

 

 

– Temporal lag between the two is short (Carey 2009) 

– Cause precedes effect (Carey 2009) 

• Note: NOT the same as necessary and sufficient causes 
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I N TROD UCTI ON

Goal: Learn causality from raw video

M otivation: Increased capacity for inference
a) Input: Video b) Event Parsing c) STC-Parsing d) Inference Over Time 
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1. Answer why events occur

2. Correct misdetections and infer hidden

objects/ actions

3. Infer triggers, goals, and intents

However:

OBSERVATION CAUSALITY 

(generally)

CAUSALI TY I N V I SI ON

Works in vision that incorporate causality can

be categorized as

1. Using pre-specified causal relationships

for action detection

2. Using causal measuresto aid action detec-

tion

3. Using a pre-specified grammar for learn-

ing causality

Learning causality from video is largely miss-

ing from the vision literature.

CAUSALI TY AN D V I D EO D ATA

The focus of causality research is often disjoint

from the needs of a vision system:

1. Learning causal networks via constraint

satisfaction or Bayesian methods: In-

tractable on vision sensors

2. First-order logic: Not probabilistic

3. Markov logic networks: Intractable, not

learned

PERCEPTUAL CAUSALI TY

Cognitive science research suggests infants use heuristics in judging causal relationships:

1. Agentive actions are causes

2. Measure co-occurrence

cr :

Action ¬Action

Effect c0 c1

¬Effect c2 c3

3. Temporal lag between the two is short

Time(Action) − Time(Effect) < ✏

4. Cause precedes effect

Time(Action) − Time(Effect) > 0

To learn perceptual causality in video, we restrict co-occurrence of detected events and effects to

these heuristics.

CAUSES AN D EFFECTS: TH E CAUSAL AN D -OR GRAPH

Effects: Fluents are time-varying statuses of objects.
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Causes: Actions suggest an And-Or representation.
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Pairing cause and effect: Fluent changes are matched

with corresponding causing actions. In the absence of

change-inducing actions, fluent values are causally at-

tributed to the inertial action.

The Causal And-Or Graph
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GROUN D I N G CAUSALI TY ON V I D EO

Fluent changes in the Causal And-Or Graph are detected using classifiers. Actions are detected as

instances from the Temporal And-Or Graph, which are grounded on relationships between objects.

Objects are detected on the Spatial And-Or Graph using templates.

The Temporal And-Or Graph
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The Spatial And-Or Graph
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PRI N CI PLED LEARN I N G

Information Projection:

True contingency 

table distribution 

Initial 

distribution 

Select cause/effect relationship 

that maximizes distance (KL) 

Repeat 

IEIEp fp 111 : crcr

IEIEp fp 222 : crcr

Match the statistics of 

the contingency table 

KL f || p( ) = KL f || p+( ) + KL p+ || p( )

M odel Pursuit: Incrementally pursue a model,

adding a contingency table at each iteration:

p+ (pg) =
1

z+

p(pg) exp (− hλ+ cr + i )

Prop. 1: Matching statistics on the model to the

observed data, Ep (cr + ) = E f (cr + ), gives

λ+ ,i = log

✓
hi

h0

·
f 0

f i

◆

Prop. 2: Adding causal relations

cr + = argmax
cr

KL(p+ ||p) = argmax
cr

KL(f ||h)

PRELI M I N ARY RESULTS

Pursuit orders of causal relations.

Hierarchical Example: The Locked Door

Confounded Example: The Elevator

Our method acquires true causes before non-

causes, outperforming Hellinger ’s Chi-Square

and Treatment Effect.

CON TACT I N FORM ATI ON

Web http:/ / www.stat.ucla.edu/ ~amyfire

Email amy.fire@ucla.edu



MODIFIED GOAL:  
LEARN AND INFER PERCEPTUAL 
CAUSALITY 

10 



What are the effects? Fluent changes. 
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• Fluents are time-varying statuses of objects 
– Mueller – Commonsense Reasoning 2006 



What are the causes?  Actions. 

 

 

 

 

 

 

 

• Probabilistic Graphical Representation for Causality  
– And-Or Graph 
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Causal AOG 
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Connecting Temporal to Causal and Spatial  
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Grounding on Pixels:  
Connecting S/T/C-AOG 
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LEARNING PERCEPTUAL CAUSALITY 
Preliminary Theory 
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Principled Approach: Information projection 

DellaPietra, DellaPietra,Lafferty, 97 

Zhu, Wu, Mumford, 97 
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Select cause/effect relationship that makes p1 
closest (KL) to p to preserve learning history 
while maximizing Info. Gain 

KL f || p( ) = KL f || p+( ) + KL p+ || p( )

max KL f || p( ) - KL f || p+( )éë ùû= maxKL p+ || p( )
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Learning Pursuit: Add Causal Relations 

• Model Pursuit 
 

 

 

 

 

 

• Proposition 1: Find parameters 
– Model formed by min KL (p+ || p), matching statistics 

 

 

 

• Proposition 2: Pursue cr.  
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Selection from ST-AOG 
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Performance vs. TE 
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Performance vs. Hellinger χ2 
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Increasing Misdetections 
(Simulation) 
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0% misdetection 

10% misdetection 

20% misdetection 



STC-Parsing Demo 

23 



Looking Forward: 

• Finish learning the C-AOG 

 

• Increase reasoning capacity of the C-AOG 

 

• Integrate experiment design 
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