Learning Perceptual Causality from Video

Amy Fire and Song-Chun Zhu
Center for Vision, Cognition, Learning and Art (VCLA), University of California, Los Angeles

PERCEPTUAL CAUSALITY

Cognitive science research suggests infants use heuristics in judging causal relationships: Information Projection:
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Motivation: Increased capacity for inference
Model Pursuit: Incrementally pursue a model,
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CAUSES AND EFFECTS: THE CAUSAL AND-OR GRAPH P+(pg) = plpg) exp (=(Arery))

1. Answer why events occur Effects: Fluents are time-varying statuses of objects. The Causal And-Or Graph Prop. 1: Matching statistics on the model to the
observed data, E, (cry) = Ef (cry), gives
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3. Infer triggers, goals, and intents
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However: Causes: Actions suggest an And-Or representation. ‘ on ‘ of f

Prop. 2: Adding causal relations
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CAUSALITY IN VISION Pairing cause and effect: Fluent changes are matched

with corresponding causing actions. In the absence of
change-inducing actions, fluent values are causally at-
tributed to the inertial action.

Pursuit orders of causal relations.
Hierarchical Example: The Locked Door
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Works in vision that incorporate causality can
be categorized as
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1. Using pre-specified causal relationships
for action detection

2. Using causal measures to aid action detec- GROUNDING CAUSALITY ON VIDEO

tion Fluent changes in the Causal And-Or Graph are detected using classitfiers. Actions are detected as P ——y :

3. Using a pre-specified grammar for learn- instances from the Temporal And-Or Graph, which are grounded on relationships between objects. " terston Nmber D7 remtonmumper
ing causality Objects are detected on the Spatial And-Or Graph using templates. Confounded Example: The Elevator
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Learning causality from video is largely miss- The Temporal And-Or Graph The Spatial And-Or Graph ________ .
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satisfaction or Bayesian methods: In-
tractable on vision sensors
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2. First-order logic: Not probabilistic "
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