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Overview	
1.   Learn	the	underlying	causal	rela@onships	

2.  Represent	the	causal	rela@onships	
3.  Infer	instances	from	video.	

–  Explain	why	(and	why	not)	events	happened.	
–  Fill	in	gaps	from	ST	explana@ons.	
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Causality	
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Age, Locale 
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•  D.	Rubin,	“The	design	versus	the	analysis	of	observa@onal	studies	for	causal	effects:	parallels	
with	the	design	of	randomized	trials,”		



Causal	Diagrams	
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Age, Locale 
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P Cancer | do Smoking Status( )( )

•  Pearl	–	Causality	2000.		Reasoning	through	constraint	sa@sfac@on.	
•  Mueller	–	Commonsense	Reasoning	20.		Reasoning	through	1st	order	logic.	

x0 



Context	in	Vision	Research	

8	

Modeling Mutual Context of Object and Human Pose
in Human-Object Interaction Activities

Bangpeng Yao Li Fei-Fei
Computer Science Department, Stanford University, USA

{bangpeng,feifeili}@cs.stanford.edu

Abstract

Detecting objects in cluttered scenes and estimating ar-
ticulated human body parts are two challenging problems in
computer vision. The difficulty is particularly pronounced
in activities involving human-object interactions (e.g. play-
ing tennis), where the relevant object tends to be small or
only partially visible, and the human body parts are often
self-occluded. We observe, however, that objects and human
poses can serve as mutual context to each other – recogniz-
ing one facilitates the recognition of the other. In this paper
we propose a new random field model to encode the mutual
context of objects and human poses in human-object inter-
action activities. We then cast the model learning task as a
structure learning problem, of which the structural connec-
tivity between the object, the overall human pose, and dif-
ferent body parts are estimated through a structure search
approach, and the parameters of the model are estimated
by a new max-margin algorithm. On a sports data set of six
classes of human-object interactions [12], we show that our
mutual context model significantly outperforms state-of-the-
art in detecting very difficult objects and human poses.

1. Introduction
Using context to aid visual recognition is recently re-

ceiving more and more attention. Psychology experiments
show that context plays an important role in recognition in
the human visual system [3, 24]. In computer vision, con-
text has been used in problems such as object detection and
recognition [25, 14, 8], scene recognition [23], action clas-
sification [22], and segmentation [28]. While the idea of
using context is clearly a good one, a curious observation
shows that most of the context information has contributed
relatively little to boost performances in recognition tasks.
In the recent Pascal VOC challenge dataset [9], the differ-
ence between context based methods and sliding window
based methods for object detection (e.g. detecting bicycles)
is only within a small margin of 3− 4% [7, 13].
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Figure 1. Objects and human poses can serve as mutual context to
facilitate the recognition of each other. In (a), the human pose is
better estimated by seeing the cricket bat, from which we can have
a strong prior of the pose of the human. In (b), the cricket ball is
detected by understanding the human pose of throwing the ball.

One reason to account for the relatively small margin is,
in our opinion, the lack of strong context. While it is nice
to detect cars in the context of roads, powerful car detec-
tors [20] can nevertheless detect cars with high accuracy
whether they are on the road or not. Indeed, for the human
visual system, detecting visual abnormality out of context
is crucial for survival and social activities (e.g. detecting a
cat in the fridge, or an unattended bag in the airport) [15].

So is context oversold? Our answer is ‘no’. Many impor-
tant visual recognition tasks rely critically on context. One
such scenario is the problem of human pose estimation and
object detection in human-object interaction (HOI) activi-
ties [12, 32]. As shown in Fig.1, without knowing that the
human is making a defensive shot with the cricket bat, it is
not easy to accurately estimate the player’s pose (Fig.1(a));
similarly, without seeing the player’s pose, it is difficult to
detect the small ball in the player’s hand, which is nearly
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with regards to the number of manipulable object detections
passed to the Bayesian framework. For lower number of
detections, the Bayesian framework has lower performance
due to missing true detections. For higher number of
detections, the Bayesian framework has lower performance
due to the confusion from false positives. This effect is more
pronounced for lower !Scene values where the scene
component has lower discriminativeness (see Fig. 24c).

Finally, we evaluated our system with respect to the
dimensionality of the pose feature vector. This dimension-
ality is determined by the number of “shape context words”
formed in the shape dictionary. Fig. 24d shows the accuracy
of our system against the dimensionality of the pose feature
vector. As expected, our performance reduces when using a
very small number of words. In our experiments, we use a
dictionary of 100 visual words resulting in a 100-dimen-
sional pose feature vector.
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Fig. 22. Some illustrative examples showing the performance of the system. (a) The likelihood of various objects using independent detectors. The
colors of the rectangles represent the likelihood probability (red meaning higher probability and blue meaning lower probability). (b) The posterior
probabilities after the framework was applied. (c) The final result of our approach. In the first example, the detector detects four possible mallets and
three possible croquet balls. After applying the spatial constraints, all the false positives are rejected as they fail to satisfy spatial constraints (the
other mallets are not connected to a human body and the other balls are above the detected human centroid). In the second example, the false
positives of bats are rejected as they fail to satisfy spatial constraints. Also, in both cases, detections related to objects incongruent with scene and
action information are also rejected. (Note the abbreviations T-Ball, C-Ball, V-Ball, and Cq-Ball refer to tennis, cricket, volley, and croquet balls,
respectively.)

Fig. 21. (a) Confusion matrix (pose only): The confusion matrix is that
only pose information is used for action classification. (b) Comparative
performance of our approach with individual components.

Fig. 23. Some other examples: In the first case, the tennis racket was
detected with a lower likelihood as compared to other objects. After
combining information from scene and action, the belief in the tennis
racket increases since the action and the scene are tennis-serve and
tennis court, respectively. In the second case, our approach rejects false
positives of objects such as a mallet and bat. These objects are rejected,
as they are not congruent to a volleyball-court and a volleyball-smash
action. The false positives in volleyballs are also rejected as they fail to
satisfy spatial constraints. Same abbreviations as in Fig. 22.

 
where (i,j) are coordinates of the upper left corner of the 
bounding box, (h, w) its height and width and (H, W) the 
height and width of the image. This feature vector encodes 
relative size and location of pedestrians observed by a 
camera mounted on a vehicle.  While the training process 
should be repeated whenever the camera position changes, 
this is not expected to be a problem for driver-assistance, 
where pedestrian detection is based on cameras installed by 
the manufacturer during vehicle assembly. 
 
The main difficulty in training the classifier to discriminate 
between the sets of random and true bounding boxes is that 
the two sets have a significant overlap. In fact, the second set 
is almost completely inside the first, as most pedestrian 
locations are also possible locations for pedestrian absence. 
Hence, training a validator with 100% accuracy is 
impossible. To overcome this problem, we propose to design 
a classifier that, instead of minimizing the error rate, accepts 
all positive examples and minimizes the false-positive rate. 
In this way, the combined pedestrian+validator system 
accepts all pedestrians and rejects as many false positives as 
possible. Since this is a special case of cost-sensitive 
classification, we have used the cost-sensitive boosting 
approach of [7] to train the validator. The white pixels of Fig. 
3 show the learned locations for the upper-left corner of 
pedestrians with height of 260 pixels in a 640×480 image. 
This is roughly the size of the left false-positive in Fig 1. As 
the map of Fig.3 suggests, to correspond to a true pedestrian, 
the bounding box should have a much higher upper-left 
corner.  Hence, the validator rejects the bounding box. In 
addition, the regions of acceptance by the validator can be 
approximated by rectangles and the detector itself applied 
only inside these rectangles. This shrinks the scanning 
region and speeds up the overall detection. 
     
      Experiments 

 
We compared the proposed system to a set of state-of-the-art 
pedestrian detectors on the Caltech Pedestrian dataset [2]. 
Similarly to Dollar et al. [3] we adopted an image 
representation based on a 10 channel decomposition. This 
included 3 color channels (LUV color space), 6 gradient 
orientation channels, and a gradient magnitude channel. The 
performance of the proposed system was evaluated with the 
toolbox of [2]. The comparison is based on detecting 

pedestrians of height at least 50 pixels in 640×480 images. 
This is equivalent to detecting pedestrians about 40m away 
from the vehicle. Fig. 4 presents the results of this 
comparison. The numbers shown on the left of the legend 
summarize the detection performance by the log-average 
miss-detection rate. The set of benchmark detectors includes 
popular architectures, such as HOG [4] or the deformable 
part model of [5]. The proposed method outperforms all 
detectors other than ACF+SDt [6], which (unlike ours) uses 
motion information. The most direct comparison is 
ACF-Caltech [6], which uses a similar detector but ignores 
context information (no validator). The proposed system has 
better accuracy, i.e. 44% vs. 41% log-average miss-detection. 
In addition, by using the context information inside the 
detector and shrinking the scanning area, we were able to 
speed up the detector by 25%. 
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Fig. 2, proposed system for pedestrian detection 

 

 
Fig. 3, white pixels show the possible locations for upper-left 
corner of pedestrians of height 260 pixels in a 640×480 images 

 
Fig. 4 miss rate vs. FPPI rate for of various pedestrian detectors. 
The number on the left of each legend is the log-average miss-rate. 
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Abstract

We present a novel, non-intrusive approach for estimat-
ing contact forces during hand-object interactions relying
solely on visual input provided by a single RGB-D camera.
We consider a manipulated object with known geometrical
and physical properties. First, we rely on model-based vi-
sual tracking to estimate the object’s pose together with that
of the hand manipulating it throughout the motion. Fol-
lowing this, we compute the object’s first and second order
kinematics using a new class of numerical differentiation
operators. The estimated kinematics is then instantly fed
into a second-order cone program that returns a minimal
force distribution explaining the observed motion. However,
humans typically apply more forces than mechanically re-
quired when manipulating objects. Thus, we complete our
estimation method by learning these excessive forces and
their distribution among the fingers in contact. We provide
a full validity analysis of the proposed method by evaluating
it based on ground truth data from additional sensors such
as accelerometers, gyroscopes and pressure sensors. Exper-
imental results show that force sensing from vision (FSV) is
indeed feasible.

1. Introduction
Reliably capturing and reproducing human haptic in-

teraction with surrounding objects by means of a cheap
and simple set-up (e.g., a single RGB-D camera) would
open considerable possibilities in computer vision, robotics,
graphics, and rehabilitation. Computer vision research has
resulted in several successful methods for capturing motion
information. A challenging question is: to what extent can
vision also capture haptic interaction? The latter is key for
learning and understanding tasks, such as holding an object,
pushing a chair or table, as well as enabling its reproduction
from either virtual characters or physical (e.g., robotic) em-
bodiments.

Contact forces are usually measured by means of hap-

Figure 1: Using a single RGB-D camera, we track marker-
less hand-object manipulation tasks and estimate with high
accuracy contact forces that are applied by human grasping
throughout the motion.

tic technologies such as force transducers. The main draw-
back of such technologies is that they are obtrusive. Com-
puter vision techniques would therefore be an ideal alterna-
tive to circumvent this issue. Yet, is it possible to estimate
forces from visual observation? There is evidence that hap-
tic perception can be induced through illusion and substi-
tution dominated by vision, e.g. [24]. We aim at exploring
computer vision to infer the forces exerted by humans on
surrounding objects. In particular, we consider hand-object
grasping and manipulation. The problem is extremely com-
plex. Indeed, establishing that a hand-object contact has oc-
curred is difficult because of occlusions and tracking inac-
curacies. Nevertheless, the detection of events like an object
being lifted or discontinuities in body motion may provide
useful hints towards disambiguating discrete events. Addi-
tionally, even if contact positions can be determined effi-
ciently, the estimation of the applied forces is still challeng-
ing because of the inherent multiplicity of solutions.

We demonstrate that, by solely using computer vision, it
is possible to compute interaction forces occurring in hand-
object manipulation scenarios where object properties such
as shape, contact friction, mass and inertia are known, along
with human hand geometry. First, we monitor both the hand

Pham et al., 2015 Towards force sensing 
from vision: Observing hand-object 
interactions to infer manipulation forces 
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intra-class variations that arise in natural videos. In our
work, we utilize space-time visual words as a source of low-
level visual events for causal analysis.
Video segmentation Standard approaches to video segmen-
tation utilize motion and appearance features to segment
video into regions or volumes at the pixel level. The au-
tomatic generation of accurate segmentations of video ob-
jects remains challenging, and the current best results are
based on user-interaction [1]. In contrast, we explore an al-
ternative segmentation approach in which visual events are
grouped on the basis of their temporal interactions.

3. Temporal Causal Analysis

Our approach consists of two stages. The first stage en-
codes the video sequence as a multivariate point-process
over visual events. We use spatio-temporal visual words to
define a vocabulary of visual events and encode recurring
motions. The second stage analyzes causal relationships
between pairs of point-processes and groups co-occurring
visual-words into independent causal sets.

3.1. Point-process representation of video

Visual events from spatio-temporal words The space-
time interest point detector [14] is applied to each video
sequence. Each interest point p has a feature vector f

p

with two components: position-dependent histograms of
oriented gradients (HoG) and optical flow (HoF) from p’s
space-time neighborhood. Spatio-temporal visual words are
built by applying k-means clustering to {f

p

}. Each interest
point is assigned to the closest visual word.
Multivariate point-processes Each visual word occurs in a
subset of frames, with frame numbers {t

l

}, and can there-
fore be represented as a point process N

i

(t), where N

i

(t)
counts the number of occurrences of the event type i in the
interval (0, t]. The key defining property of a point pro-
cess is that events are defined only by their time of oc-
currence. The number of events in a small interval dt is
dN

i

(t) = N

i

(t + dt) � N

i

(t), and E{dN
i

(t)}/dt = �

i

is the mean intensity of the process N
i

(t). We consider the
zero-mean process N

i

(t) = N

i

(t) � �

i

t. Point-processes
generated by each of the m visual words in a video se-
quence form a m-dimensional multivariate point-process
with counting vector N(t) = (N1(t), N2(t), . . . , Nm

(t))T .
We assume that the process defined by N(t) is zero-mean,
wide-sense stationary, mixing, and orderly [5].

An example is shown in Fig. 1. The sequence consists
of a patty-cake game with a secondary “noise” motion. The
four point-processes corresponding to the visual words are
shown in the co-occurrence matrix in Fig. 1(e). The green
and blue processes correspond to the hand-going-up stage
of the patty-cake game, the red process corresponds to the
hands-touching stage of the patty-cake game, and the yel-

(a) Frame 77 (b) Frame 85 (c) Frame 257 (d) Frame 266

G
R
B
Y

(e) Co-occurrence Matrix of Point-Processes

Figure 1. A sequence of a pattycake with additional noise motion.
Example frames with overlayed visual words are shown in (a)-(d).
The co-occurrence matrix of point-processes is shown in (e).

low process corresponds to the noise motion. From the
temporal ordering of the processes in the co-occurrence ma-
trix, we can observe that the blue and green processes co-
cause and co-occur, and in addition they cause the red pro-
cess, whereas the yellow process occurs independently of
the other three.

3.2. Spectral representation of point processes

The first step in pair-wise causal analysis is to repre-
sent the statistical relationship between two point-processes
N

i

(t) and N

j

(t). This relationship is captured by the cross-
covariance density function R

i,j

(⌧) at lag ⌧ (Eq. 1), which
is analogous to the cross-correlation function in a vector
time-series model [2],

R

i,j

(⌧) =
E [dN

i

(t)dN
j

(t+ ⌧)]

dtd⌧

� 1[i = j]�
i

�(⌧), (1)

where �(⌧) is the classical Kronecker delta function. The
auto-covariance when i = j is handled as a special case via
the indicator function 1[b] for Boolean b.

A nonparametric estimate of the cross-covariance can be
obtained from the cross-correlogram: The time axis (0, T ]
is divided into w bins and a histogram of events is com-
puted at each bin. The event data is successively re-binned
by taking each occurrence of an event of type i, shifting the
time origin so that this event occurs at time zero, and then
re-binning the events of type j. The normalized count in
bin k of the resulting histogram gives us an estimate of the
probability that an event j will arrive at a lag of kw after
event i, that is R

i,j

(kw). Similarly, auto-covariance is esti-
mated by dividing the time axis into w bins and calculating
the probability of an event occurring at each bin.

The cross-spectrum S

i,j

(f) between processes N

i

and
N

j

is the Fourier transform of the cross-covariance density
function, and the auto-spectrum S

i,i

(f) of process N
i

is the
Fourier transform of the auto-covariance density function.
The spectral matrix for the multivariate point-process N(t)
is formed from the auto-spectrum (diagonal elements) and

Prabhakar, et al.  2010. Temporal 
Causality for the Analysis of 
Visual Events   

Figure 1: Allen’s interval algebra describing temporal logic be-
tween durations T1 and T2.

Clyde, the case-frames with the temporal logic incorporated
are,

[ PRED: steal, AG: Jack, D: cashier, SUB:{
[ PRED: rob, AG: Bonnie, OBJ: bank, DURING: steal ],
[ PRED: talk, AG: { Clyde, cashier }, OVERLAP: steal ] }

]

The entire list of temporal cases, for two durations T1 and
T2 is as follows,

AFTER : T start
2 > T end

1

MEETS : T end
1 = T start

2

DURING : (T start
1 < T start

2 ) ^ (T end
1 > T end

2 )
FINISHES : (T end

1 = T end
2 ) ^ (T start

1 < T start
2 )

OVERLAPS : (T start
1 < T start

2 ) ^ (T end
1 > T start

2 ) ^ (T end
1 < T end

2 )
EQUAL : (T start

1 = T start
2 ) ^ (T end

1 = T end
2 )

STARTS : (T start
1 = T start

2 ) ^ (T end
1 6= T end

2 )

It is ensured that each temporal case is unique. A little
thought should convince the reader that temporal relation-
ships between more than two events are also possible within
this scheme.
There is still a requirement for representing the depen-

dency of events. Some events require a causal relationship,
i.e. they will not occur independently and are conditional
upon other events. The representation so far does not
have the capability to codify causal relationships, which is
addressed in the next section.

Causality
In understanding the nature of events, the causal relation-
ships between the constituent sub-events are indispensable.
Some events might not occur if certain conditions were not
satisfied, while some events may be dependent on other
events. In order to explain this concept we show a simplistic
example below,
“Caravaggio pulled the chair therefore Michelangelo fell

down.”
[ PRED: pull, AG: Caravaggio, OBJ: chair, CAUSE:

[ PRED: fall, D: Michelangelo, FAC: down] ]

In the above example, Michelangelo would not have fallen
down if Caravaggio had not pulled the chair. Therefore the
‘fall’ and ‘pull’ event have a causal relationship. It should
be noted that only definite causal relations are represented

by the CAUSE case, instead of using SUB. While the proposed
extension allows the representation of causal relationships,
it is noted that causal relationships cannot be inferred from
video measurements alone. In other words, it is impossi-
ble to make a distinction between two successive events,
and two causal events without some reasoning. Thus, from
the point of view of on-line processing of measurements,
videos are represented in terms of a temporal representation.
Events and sub-events are arranged in a hierarchy according
to the order of their temporal incidence and duration. Infer-
ring causality solely from these temporal representations is
a promising future direction.

Event Detection in Videos
In this section, we address some issues of implementing the
proposed representation for event detection in videos. Video
data is available as a discrete set of images, sampled on se-
quential lattices. Let f(p, t) represent a continuous video
signal, indexed by spatial and temporal coordinates respec-
tively. By indexing on the discrete-time variable k we can
temporally represent the video signal as the set {f [x, k]}
for 1  k  N , where N is the temporal support of the
video signal, and x = (x, y) denotes the spatial coordinate
(over some support). Here it is assumed that the lower-level
tasks of object detection, classification and tracking have
been performed for a stationary camera (corresponding to
the GSD of Neumann (1989)). Each object is represented
in terms of its label and motion, e.g. {persona, ua}, where
ua = { (x1, y1), (x2, y2), . . . (xN , yN ) } is the trajectory of
persona’s centroid. It is important to note that since it is
the relative concept of motion that we are interested in (e.g.
where did agent1 move to with respect to object2?), two-
dimensional projections of three-dimensional world trajec-
tories are sufficient for event representation (barring some
degenerate configurations). Particular to each domain, do-
main objects and a vocabulary of predicates can be defined.
Conceptually, these are the ‘input’ into a system that repre-
sents these inputs in terms of CASEE . For event detection,
a set of events are predefined as events of interest. In or-
der to detect these events of interest within an autonomously
generated representation of events in a video sequences, we
pose the problem as a subtree isomorphism. A similarity
measure is defined to guide the search for a match.

Maximal Subtree Isomorphism
The temporal structure of CASEE can be intuitively visualized
as a rooted tree, with each vertex corresponding to a sub-
event (case-frame), and each edge corresponding to the tem-
poral relationship between two vertices (e.g. AFTER, MEET).
A split occurs at the simultaneous incident of multiple sub-
events or when one of several sub-event ends during a parent
event. An example sub-tree is shown in Figure 2. The prob-
lem of detecting the occurrence of a pre-defined event can be
posed as finding a maximal subtree isomorphism. Given a
video stream, a rooted tree can be continuously grown based
on temporal relations of sub-events. Each pre-defined event
itself can be represented as a tree, too. For two rooted trees,
T1 = (V1, E1), the event-tree of the pre-defined events of
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Figure 1: Sample outcomes of our scheme: background c(x) = 0 (gray) and foreground layers c(x) = 1, c(x) = 2, c(x) = 3

indicated by , , respectively. On the far right, our algorithm correctly infers that the bag strap is in front of the woman’s
arm, which is in front of her trunk, which is in front of the background. Project page: http://vision.ucla.edu/cvos/

Abstract
Occlusion relations inform the partition of the image do-

main into “objects” but are difficult to determine from a sin-
gle image or short-baseline video. We show how long-term
occlusion relations can be robustly inferred from video, and
used within a convex optimization framework to segment the
image domain into regions. We highlight the challenges in
determining these occluder/occluded relations and ensuring
regions remain temporally consistent, propose strategies to
overcome them, and introduce an efficient numerical scheme
to perform the partition directly on the pixel grid, without
the need for superpixelization or other preprocessing steps.

1. Introduction

Partitioning the image domain into regions that corre-
spond to “objects” is elusive absent an explicit definition of
objects that has a measurable correlate in the image. Gestalt
principles [33] provide grouping criteria: continuity, regular-
ity, proximity, compactness, the last of which (figure/ground,
or occlusion) is best informed by video. Occlusions have
been used extensively for grouping [32, 5, 8, 3]. A feature of
[3] is that grouping is obtained via a linear program: local or-
dering constraints provided by occluder/occluded relations
are integrated to globally partition the image domain into
depth layers. The challenge is that errors in determining
occlusion relations can have a cascading effect.

Occlusions are usually detected from the residual of op-
tical flow, but even assuming this detection is correct, oc-
cluder relations are non-trivial to determine. As we show in
Fig. 2, correct determination of the occluder requires either
knowledge of the motion of the occluded region (which is

undefined), or knowledge of its partition into regions. Hence
the conundrum: to determine occlusion relations, so that
objects can be segmented, we need to know the objects in
the first place. The first contribution of our work is to break
the conundrum by leveraging motion and appearance pri-
ors to hallucinate motion in the occluded region. With the
occluder/occluded relations we can obtain a depth-layer par-
tition for the image domain. In video, however, nuisances
such as motion blur, quantization, scale, and lack of motion
can cause layer segmentation to fail. Thus, the second contri-
bution is a causal framework for integrating occlusion cues
exploiting temporal consistency priors to partition the video
into depth layers. Our third contribution is to make the solu-
tion of the resulting optimization problem efficient using a
primal-dual scheme. Our proposed method is competitive to
state-of-the-art approaches qualitatively in visual boundaries
and quantitatively in numerical benchmarks, while process-
ing video sequences causally, rather than in batch. Samples
from our scheme are shown in Fig. 1.

The paper is organized as follows: we set up our problem
in Sec. 2. We describe our first contribution in determining
occluder relations in Sec. 2.1 and how we leverage prior
work [3] in Sec. 2.2. Sec. 3 explores how we causally
integrate cues to construct priors for foreground regions in
Sec. 3.1, obtain persistent object boundaries in Sec. 3.2, and
aggregate occluder relations in Sec. 3.3. Our final model
is presented in Sec. 3.4. Implementation and optimization
details are covered in Sec. 4–5, including our approach for
hallucinating motion in the occluded regions in Sec. 4.2.
Empirical evaluation appears in Sec. 6, where we show that
the typical failure modes of prior approaches stemming from
unreliable occlusion relations are mitigated.

1
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Abstract

With nearly one billion online videos viewed everyday,

an emerging new frontier in computer vision research is

recognition and search in video. While much effort has

been devoted to the collection and annotation of large scal-

able static image datasets containing thousands of image

categories, human action datasets lag far behind. Cur-

rent action recognition databases contain on the order of

ten different action categories collected under fairly con-

trolled conditions. State-of-the-art performance on these

datasets is now near ceiling and thus there is a need for the

design and creation of new benchmarks. To address this is-

sue we collected the largest action video database to-date

with 51 action categories, which in total contain around

7,000 manually annotated clips extracted from a variety of

sources ranging from digitized movies to YouTube. We use

this database to evaluate the performance of two represen-

tative computer vision systems for action recognition and

explore the robustness of these methods under various con-

ditions such as camera motion, viewpoint, video quality and

occlusion.

1. Introduction

With several billion videos currently available on the in-
ternet and approximately 24 hours of video uploaded to
YouTube every minute, there is an immediate need for ro-
bust algorithms that can help organize, summarize and re-
trieve this massive amount of data. While much effort
has been devoted to the collection of realistic internet-
scale static image databases [17, 23, 27, 4, 5], current ac-
tion recognition datasets lag far behind. The most popular
benchmark datasets, such as KTH [20], Weizmann [3] or the
IXMAS dataset [25], contain around 6-11 actions each. A
typical video clip in these datasets contains a single staged
actor with no occlusion and very limited clutter. As they
are also limited in terms of illumination and camera posi-
tion variation, these databases are not quite representative
of the richness and complexity of real-world action videos.

Figure 1. Sample frames from the proposed HMDB51 [1] (from

top left to lower right, actions are: hand-waving, drinking, sword

fighting, diving, running and kicking). Some of the key challenges

are large variations in camera viewpoint and motion, the cluttered

background, and changes in the position, scale, and appearances

of the actors.

Recognition rates on these datasets tend to be very high.
A recent survey of action recognition systems [26] reported
that 12 out of the 21 tested systems perform better than 90%
on the KTH dataset. For the Weizmann dataset, 14 of the 16
tested systems perform at 90% or better, 8 of the 16 better
than 95%, and 3 out of 16 scored a perfect 100% recogni-
tion rate. In this context, we describe an effort to advance
the field with the design of a large video database contain-
ing 51 distinct action categories, dubbed the Human Mo-
tion DataBase (HMDB51), that tries to better capture the
richness and complexity of human actions (see Figure 1).

1
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Secret Agents : Inferences About Hidden Causes by 10- and 12-Month-Old 
Infants 
R. Saxe, J.B. Tenenbaum and S. Carey 

Fig. 1a), a real-life rendering of the animation in Experiment 2 of

Csibra, Gergely, Koos, and Brockbank (1999). The beginning of
the event was hidden; the beanbag emerged already in motion.

Although only the beanbag is visible in this event, adults per-
ceive the beanbag as ‘‘being thrown’’ by a person located beyond

the wall.We asked whether infants, too, would infer that an agent
had thrown the beanbag. If so, the infants might expect to see a
human hand on the side of origin of the beanbag, and not on the

opposite side (see Figs. 1b and 1c). Previous results suggest that
infants attribute to hands both causal force and goal-directed

action (Leslie, 1984; Woodward, 1998; Woodward et al., 2001).

To ensure that any differences in results between the same-

side and different-side trials reflected an expectation that an
agent was the cause of the beanbag’s motion (and not, for in-

stance, an expectation that all moving object came from the
same side of the stage), we also included a control condition in

which the hand in the test trials was replaced by a nonagent (a
train; see Fig. 1d). We predicted that infants’ looking time would
not vary with the side of the stage on which the train appeared.

Method
Forty 12-month-old infants (23 male and 17 female; mean age5
12 months 1 day, range5 11 months 14 days through 12 months
22 days) participated in the study. An additional 2 infants were

excluded because of fussiness (n5 1) and parental interference
(n5 1). Half the infants were assigned to the experimental group

(hand test trials), and the other half constituted the control group
(train test trials).
In order to provide unambiguous evidence that the moving

object was inanimate, we familiarized each infant with a bright
red beanbag (5 in.! 5 in.) outside the experimental room before

the experiment began. The experimenter played with the bean-
bag in front of the infant and then gave the beanbag to the infant.

All events were created live on a black stage (17 in.! 34 in.)
2 ft in front of the infant. The stage was covered by a red curtain
that could be opened to reveal the stage. The infant was placed in

a high chair in a darkened experimental room, facing the stage.
The child’s mother sat next to the high chair, facing him or her.

The child’s looking at the stage was recorded by a camera and fed
to an on-line coding monitor in a different room; the coder was

blind to the experimental condition. Trial endings, determined
by a 2-s look-away criterion, were signaled by a computer beep.
A second camera recorded the events on the stage so that the

tape could be reviewed for experimental error andwhen recoding
was necessary. The test trials for 55% of the subjects were re-

coded by a second coder off-line. Intercoder reliability was 96%.
The habituation events were identical for the experimental

and control groups. Each trial began when the curtain opened,

revealing a low wall, 4 in. wide, running the depth of the stage.
On the first trial of habituation, the wall was green and 10 in.

high. Subsequent trials used either that green wall, a yellow wall
that was 7 in. tall, or a pink wall that was 4 in. tall (following the

animation of Csibra et al., 1999). If necessary, an experimenter
drew the infant’s attention by knocking on the center of the back
wall of the stage. Once the infant was looking at the display, the

experimenter threw the red beanbag over the wall and onto the
center of the stage, from off-stage left or right (Fig. 1a). The side

of origin of the beanbag was kept constant for each infant, but
was counterbalanced across infants. The infant’s looking time
was recorded from the moment the beanbag landed. Habituation

trials continued until the infant habituated (i.e., the total looking
time for 3 consecutive trials was less than half the total looking

time for the first 3 trials), or for a maximum of 10 trials.

Fig. 1. Photographs of the experimental setup: the final configuration of
(a) a habituation trial in which the beanbag emerged from off-stage right
(Experiments 1 and 3), (b) a same-side test trial in the hand condition
(Experiments 1 and 3; the hand emerged after the beanbag had landed), (c)
a different-side test trial in the hand condition (Experiments 1 and 3), (d) a
different-side test trial in the train condition (Experiment 1), and (e) a
different-side test trial in the puppet condition (Experiment 2; the puppet
is also shown in the inset).
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that could be opened to reveal the stage. The infant was placed in
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blind to the experimental condition. Trial endings, determined
by a 2-s look-away criterion, were signaled by a computer beep.
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tape could be reviewed for experimental error andwhen recoding
was necessary. The test trials for 55% of the subjects were re-
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The habituation events were identical for the experimental

and control groups. Each trial began when the curtain opened,

revealing a low wall, 4 in. wide, running the depth of the stage.
On the first trial of habituation, the wall was green and 10 in.

high. Subsequent trials used either that green wall, a yellow wall
that was 7 in. tall, or a pink wall that was 4 in. tall (following the

animation of Csibra et al., 1999). If necessary, an experimenter
drew the infant’s attention by knocking on the center of the back
wall of the stage. Once the infant was looking at the display, the

experimenter threw the red beanbag over the wall and onto the
center of the stage, from off-stage left or right (Fig. 1a). The side

of origin of the beanbag was kept constant for each infant, but
was counterbalanced across infants. The infant’s looking time
was recorded from the moment the beanbag landed. Habituation

trials continued until the infant habituated (i.e., the total looking
time for 3 consecutive trials was less than half the total looking

time for the first 3 trials), or for a maximum of 10 trials.

Fig. 1. Photographs of the experimental setup: the final configuration of
(a) a habituation trial in which the beanbag emerged from off-stage right
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F(9,81)= 1.24, MS. =1533.3, Blocks x Colour x Colour Change, F(9,81)= 1.56, MSe= 
2475.0, Blocks x Colour x Delay, F< I and Blocks x Colour x Colour Change x Delay, 
F< 1]. 

An effect of delay was found, F(4, 36)=17.51, MSe=83907.8, with increasing 
delays leading to lower ratings. There was also an effect of colour change, F(1, 
9) = 13.50, MS, = 2105.5, indicating that scenes without a colour change were 
considered more causal,  with means of 151 and 144,  respectively. 
The effect is small, however, and appears to be restricted to the smaller 

delays, although the Colour Change x Delay interaction does not quite 
reach significance [F(4, 36)=2.41, MSe=4094.6,p=0.068]. Separate 
analyses con-firmed that the effect of a change of colour was only 
significant at the 17-msec delay, F(1, 9) = 6.22, MSe = 9071.2. The effect 
was non-significant at all other delays [Fs(1, 9) < 2.50, MSe < 3892.6]. 

The colour change effect is qualified by a Colour Change x Colour 
interaction, F(1, 9) = 7.23, MSe =1491.0. Inspection of the means shows 
that scenes with a colour change were given lower ratings only if the red 
object changed to black, with means of 142 and 154, whereas when the 
blue object changed colour, the means were 146 and 149. Presumably the 
red-black colour contrast was somewhat stronger than the blue-black 
contrast, and this more salient change disrupted the event more. 

Accordingly, separate ANOVAs were performed for the two colour 
sets. The effect of colour change was significant in the red-black contrast 
set, F(1, 9) = 17.39, MSe = 2138.4, but not in the blue-black contrast set 
[F(1,9)=1.42, MSe=1458.2]. Nevertheless, inspection of the means for the 
two colour sets separately showed no sign of divergence across blocks 
even for the strong red-black contrast set, and again no significant effect 
involving blocks was found. In particular, for the red-black contrast set, 
Blocks x Col-our Change [F(9, 81) = 1.69, MS, = 2725.4] and Blocks x 
Colour Change x Delay [F(36, 324) = 1.24, MSe =1638.6] were both non-
significant. For the blue-black contrast set, Blocks x Colour Change and 
Blocks x Colour Change x Delay were again non-significant [Fs < 1]. 

Delay was the only other significant effect in these analyses, with F(4, 
36) = 17.91, MSe = 39827.8, for the red-black contrast set and F(4, 36) 
=16.48, MSe = 45903.3, for the blue-black set. The means for increasing 
delays were very close in both sets, 208, 212, 135, 102, 82 and 206, 215, 
137, 100, and 78 in the red-black and blue-black sets, respectively. Thus, 
in accordance with Michotte's account, the colour of the objects per se did 
not have any effect on subjects' ratings of perceived causality. The 
remaining non-significant effects are listed below, with the red-black 
contrast set first [Blocks F< 1 and F(9, 81) =1.01, MSe= 5299.4; Blocks x 
Delay, F< 1 in both sets; Delay x Colour Change, F(4, 36)=1.94, MSe = 
4018.2, and F(4, 36) =1.56, MSe = 2161.0]. 

Discussion 
In this experiment we have failed to find any evidence of a learning effect on 
ratings of the goodness of launch events. Subjects' ratings of perceived 
causality were unaffected by the opportunity they had across blocks to learn that 
the colour change was a better predictor of B's movement than was the collision 
of A. Thus our results support Michotte's view that the perceptual structure 
underlying launch events is to some degree encapsulated. 

FIG. 2. Results of Experiment 1. Mean ratings of causality across blocks at 5 delays between 
A's and B's motion, for scenes with and without a colour change.

Schlottmann and 
Shanks.  1992.  
Evidence for a distance 
between judged and 
perceived causality 
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the focus of our investigation, the two leading rational models, DP and causal power,
and some of the data that has been gathered in support of them. Then, we provide a
brief summary of causal graphical models, present our framework for analyzing the
problem of elemental causal induction, and use this to derive causal support. The
body of the paper discusses the phenomena predicted by causal support but not
by other models, explaining the statistical origins of these predictions. We close by
considering the circumstances under which we expect causal support to be most con-
sistent with human judgments, its relationship with ideas such as ‘‘reliability’’ (Bueh-
ner & Cheng, 1997; Perales & Shanks, 2003), and how this account of elemental
causal induction can be extended to shed light on other aspects of causal learning.

2. Elemental causal induction

Much psychological research on causal induction has focused upon the problem
of learning a single causal relation: given a candidate cause, C, and a candidate effect,
E, people are asked to assess the relationship between C and E.1 Most studies present
information corresponding to the entries in a 2 · 2 contingency table, as in Table 1.
People are given information about the frequency with which the effect occurs in the
presence and absence of the cause, represented by the numbers N(e+,c+),N(e!,c!)
and so forth. In a standard example, C might be injecting a chemical into a mouse,
and E the expression of a particular gene. For this case, N(e+,c+) would be the num-
ber of injected mice expressing the gene, while N(e!,c!) would be the number of
uninjected mice not expressing the gene.

This contingency information is usually presented to participants in one of three
modes. Early experiments on causal induction would either explicitly provide partic-
ipants with the numbers contained in the contingency table (e.g., Jenkins & Ward,
1965), which we will refer to as a ‘‘summary’’ format, or present individual cases
one by one, with the appropriate frequencies (e.g., Ward & Jenkins, 1965), which
we will refer to as an ‘‘online’’ format. Some more recent experiments use a mode
of presentation between these two extremes, showing a list of all individual cases
simultaneously (e.g., Buehner et al., 2003; White, 2003c), which we will refer to as
a ‘‘list’’ format.

Table 1
Contingency table representation used in elemental causal induction

Effect present (e+) Effect absent (e!)

Cause present (c+) N(e+,c+) N(e!,c+)
Cause absent (c!) N(e+,c!) N(e!,c!)

1 We will represent variables such as C,E with capital letters, and their instantiations with lowercase
letters, with c+,e+ indicating that the cause or effect is present, and c!,e! indicating that the cause or effect
is absent.

T.L. Griffiths, J.B. Tenenbaum / Cognitive Psychology 51 (2005) 334–384 337

causal power model human judgments purely in terms of the strength of a causal
relationship. Our framework makes the distinction between structure and strength
precise, and allows us to define a new model, causal support, which addresses this
structural question. We will show that causal support accurately predicts human
judgments in all of the settings mentioned above.

3. Causal graphical models

Our framework for analyzing elemental causal induction will use causal graphical
models, a formalism for learning and reasoning about causal relationships that is a
current topic of research in computer science and statistics (e.g., Pearl, 2000; Spirtes
et al., 1993) and is beginning to be applied in cognitive science (Danks & McKenzie,
submitted; Gopnik et al., 2004; Glymour, 1998, 2001; Lagnado & Sloman, 2002;
Rehder, 2003; Steyvers et al., 2003; Tenenbaum & Griffiths, 2001, 2003; Waldmann
& Martignon, 1998). Causal graphical models, also known as causal Bayesian net-
works or causal Bayes nets, provide a means of specifying the causal relationships
that hold among a set of variables. Our brief summary of causal graphical models
will touch on three important issues: causal structure, functional causal relation-
ships, and the difference between learning structure and estimating parameters.

3.1. Causal structure

A graphical model provides an intuitive representation for the causal structure
relating a set of variables. Nodes in the graph represent variables, and directed edges
represent causal connections between those variables (Glymour, 1998, 1999; Pearl,
2000; Spirtes et al., 1993). The result is a directed graph, with ‘‘parent’’ nodes having
arrows to their ‘‘children.’’ For example, consider the directed graphs denoted
Graph 0 and Graph 1 in Fig. 3, which we will later use in describing our framework
for elemental causal induction. Both graphs are defined over three binary variables—
an effect E, a potential cause C, and a background cause B, capturing the combined

B C B C

EE

Graph 1Graph 0

Fig. 3. Directed graphs involving three variables, B, C, and E, relevant to elemental causal induction. B
represents background variables, C a potential causal variable, and E the effect of interest. Graph 1, is
assumed in computing DP and causal power. Computing causal support involves comparing the structure
of Graph 1 to that of Graph 0, in which C and E are independent.

344 T.L. Griffiths, J.B. Tenenbaum / Cognitive Psychology 51 (2005) 334–384

Griffiths and Tenenbaum.  
2005.  Structure and 
Strength in Causal Induction  
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Assump@ons	for	Learning	
•  Detec@ons	(and	hierarchies)	are	sufficient	

–  No	hidden	ac@ons	
–  No	confounders	

•  Causal	faithfulness	

•  The	Heuris@cs	
–  Heuris@c	1:	Ac@on	è	Effect	
–  Heuris@c	2:	0	<	Time(Effect)	–	Time(Ac@on)	<	δ
–  Heuris@c	3:	Co-occurrence	measures	strength	of	perceptual	causal	
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The	Effects:	Fluents	
(Time-Varying	Statuses)	

17	Mueller	–	Commonsense	Reasoning	2006	
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ΩCR =ΩA × ΔF{ }
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ΩCR =ΩA × ΔF{ }
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tables shown in Table 4.1.

Table 4.1: Causal relation.

¬Action Action

cr : ¬E↵ect c
0

c
1

E↵ect c
2

c
3

Labeling the individual cells of the table, cr = (c
0

, c
1

, c
2

, c
3

) where ci functions

as a binary indicator. When applied to a short video clip, the elements of ⌦CR

identify whether or not the clip has the action and/or fluent change.

When a collection of these video clips shows strong evidence for cr 2⌦CR, we

award perceptual causal status and add the element to our model.

4.2.2 Preparing the Data: Creating Clips from the Video

We evaluate the elements from ⌦CR using video. A long video sequence, V, is

first decomposed into shorter video clips, V = {v
1

, . . . ,vn}. Following Heuristic

2 for limiting temporal lag, only actions occurring within a pre-specified �
max

of

the fluent change are included in vi, to be considered as potential causes. The

function d(tA, tF ) measures time between the action completion, tA, and the fluent

change, tF . Some ways to compute d(tA, tF ) considered in this chapter include:

1. Counting the number of frames between tA and tF . In experiments, we

consider �
max

between 15 and 90 seconds.

2. Counting the number of action detections between tA and tF . In experi-

ments, we consider �
max

ranging from 1 to 6 recent actions.

3. Combinations of the first two. For example, taking the maximum of 15

seconds and 2 actions ensures clips last at least 15 seconds long and with at

least 2 action detections. Taking the minimum of 15 seconds and 2 actions

26
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Table 4.2: Relative Frequencies.

�F A cr Current Model Observed Data

0 0 cr
0

h
0

f
0

0 1 cr
1

h
1

f
1

1 0 cr
2

h
2

f
2

1 1 cr
3

h
3

f
3

For a causing action, f is shown in Figure 4.1(a), together with the relative fre-

quencies of cr under a probability model assuming independence, h. The greatest

di↵erence between these histograms occurs in the f
1

/h
1

and f
3

/h
3

components.

The relative frequencies f and h for a non-causing action in (b) look equivalent,

indicating independence between the fluent and action.

We select the relations that show the greatest di↵erence between f and h, as

measured by the KL-divergence, thereby adding perceptual causal semantics to

the model.

f h

0.
0

0.
4

0.
8 f0

f1
f2 f3

h0

h1
h2

h3

Causing Action

(a) Causing Action

f h

0.
0

0.
4

0.
8

f0

f1
f2

f3

h0

h1
h2

h3

Non−Causing Action

(b) Non-Causing Action

Figure 4.1: Bar charts of relative frequencies. Relative frequencies of cr for the

observations is shown on the left of each pair, and for the model of independence

on the right.

4.3 Pursuit of the Causal Relations

In this section we develop the theoretical framework for our learning theory. From

the space of all possible relations, ⌦CR, we now show how to sequentially select

28

creates clips of at most 15 seconds or 2 action detections. In experiments, we

consider �
max

to be the maximum or minimum over combinations of 15, 45

seconds and 1, 2, 3 actions.

These are explored in experiments in Section 4.5.2.3. It is intuitive to expect a

dependence between clip length definition and performance. If the clip is not long

enough to include the causing action, then the ability to detect causes diminishes.

However, if clip length is too long, the noise hide the causal relations.

4.2.3 Evaluating Causal Relations

Tallying the values from cr 2 ⌦CR across the clips, vi, we obtain relative frequen-

cies for the particular action and fluent change:

Definition 2 (Relative Frequencies of a Causal Relation). Given a causal relation

cr and video V that has been broken into clips {v
1

, . . . ,vn}, the relative frequencies

of cr are given by

RF (cr) =
1

n

nX

i=1

cr(vi). (4.4)

The relative frequencies from the video’s action and fluent detections are de-

noted by f = (f
0

, f
1

, f
2

, f
3

) and represent the percentages that a video clip exhib-

ited both a given action and/or fluent change.

Our causal model is built by greedily augmenting the action and fluent distri-

butions with causal relations, linking actions to fluent changes. At any iteration,

there is the model that has been built so far (the “current model”), and the ob-

served data from the video. The limiting relative frequencies under the current

model are denoted by h = (h
0

, h
1

, h
2

, h
3

). Table 4.2 summarizes these statistics.

We construct our model by electing the most informative causal relations se-

quentially in terms of maximizing the information gain. Intuitively, this informa-

tion gain is linked to the di↵erence between f and h.
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Causing	vs.	Non-Causing	Ac@ons	

21	

Causing Action 

Non-Causing Action 



Information projection 

DellaPietra, DellaPietra,Lafferty, 97 
Zhu, Wu, Mumford, 97 



Adding	a	Causal	Rela@on	to	the	Model	
•  Model	Pursuit	

•  Part	1:	Find	parameters	
–  Model	formed	by	min KL (p+ || p),	matching	sta@s@cs	

•  Part	2:	Pursue	cr.	max KL (p+ || p)	

23	

fppppp k ≈→→→→→→ + ……10

Ep+
cr+( ) = Ef cr+( )

p+ pg( ) = 1
z+
p pg( )exp − λ+,cr+( )

(On ST-AOG) 

DellaPietra, DellaPietra,Lafferty, 97 
Zhu, Wu, Mumford, 97 



Proposi@on	1:	Model	Parameters	

•  Suppose	f denotes	the	frequencies	of	cr+ as	observed,	and	h 
denotes	the	expected	frequencies	from	the	probability	
model,	p.			

•  If	p+ = min KL (p+ || p),	then	p+	is	of	the	form	

	and		
	

	
	for	i = 0, …, 3.	
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λ+,i = log
hi
h0
⋅
f0
fi

"

#
$

%

&
'

( ) ( ) ( )++
+

+ −= cr,exp1
λpgp

z
pgp



Prop	2:	Selec@ng	a	Causal	Rela@on	

•  Suppose	cr,	f,	h,	p,	and	p+	are	as	denoted	before.	

•  Suppose	further	that	cr+ is	selected	to	provide	the	maximum	
reduc@on	in	KL-divergence,		

•  Then	
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cr+ = argmax
cr

KL p+ || p( ) = argmax
cr

KL f ||h( )

cr+ = argmax
cr

KL f || p( )−KL f || p+( )( )



Selec@on	from	ST-AOG	
•  Suppose	parent	Or-node	A	has	

children	A1, …, An,	with	Ai	as	the	
true	cause.		Then		

	and		

•  Suppose	parent	And-node	A	has	
children	A1, …, An,	with	Ai	as	the	
true	cause.		Then		

	and	

KL fA ||hA( ) ≤KL fAi ||hAi( ) KL fA ||hA( ) ≥KL fAi ||hAi( )

crAi = argmax
crA ,crA1,...,crAni

KL f ||h( ) crA = argmax
crA ,crA1,...,crAni

KL f ||h( )

1A
f FΔ

A 

A1 A2 

β β−1
fA ≤ fA1 fA ≥ fA1

1A
f FΔ

A 

A1 A2 

2A
f

Or And 



Vending	
Machine	
Simlua@on	
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Office	Experiment	

•  5	Scenes	
–  Office	
–  3	Door	ways	(key	lock,	passcode	lock,	non-locking)	
–  Elevator	

•  Ac@ons	happen	10-20	@mes;	19	types	of	low-level	ac@ons	



Informa@on	
Gains	for	
the	Door	

29	

the relation has been fit, the model does not gain information for that relation.

Table 4.4: Information gains for the top 13 causal relations involving the door

fluent (columns) over 13 iterations (rows). The highest information gain in each

iteration is shown bolded. True causes are shown with a gray background.
C!O O!C O!C C!O O!C C!O O!C C!O O!C C!O O!C C!O O!C

A3 A4 A2 A1 A6 A6 A7 A7 A8 A8 A10 A10 A5

k = 1 0.2161 0.1812 0.1668 0.1344 0.0185 0.0185 0.0185 0.0185 0.0185 0.0185 0.0170 0.0170 0.0155

k = 2 0.0000 0.1812 0.1668 0.1344 0.0185 0.0185 0.0185 0.0185 0.0185 0.0185 0.0170 0.0170 0.0155

k = 3 0.0000 0.0000 0.1668 0.1344 0.0185 0.0185 0.0185 0.0185 0.0185 0.0185 0.0170 0.0170 0.0155

k = 4 0.0000 0.0000 0.0000 0.1344 0.0185 0.0185 0.0185 0.0185 0.0185 0.0185 0.0170 0.0170 0.0155

k = 5 0.0000 0.0000 0.0000 0.0000 0.0185 0.0185 0.0185 0.0185 0.0185 0.0185 0.0170 0.0170 0.0155

k = 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0264 0.0185 0.0185 0.0185 0.0185 0.0170 0.0170 0.0155

k = 7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0185 0.0185 0.0185 0.0185 0.0170 0.0170 0.0155

k = 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0264 0.0185 0.0185 0.0170 0.0170 0.0155

k = 9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0185 0.0185 0.0170 0.0170 0.0155

k = 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0264 0.0170 0.0170 0.0155

k = 11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0170 0.0170 0.0155

k = 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0244 0.0155

k = 13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0155

Figure 4.7 shows plots of information gains for causal relations in the order

pursued, separated by fluent. Causes are added to the model before non-causes.

Clear cuto↵s of information gains for the door and light fluents separate causes

from non-causes.

(a) Door (b) Light (c) Monitor

Figure 4.7: O�ce data information gains for causal relations in the order pursued,

separated by fluent. Green circles label causes.

The correct cuto↵ is less clear for the computer monitor, in part due to only ac-

quiring partial causal information. The monitor’s display status has preconditions

of power and computer status which were not detectable.
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Increasing	Misdetec@ons	
(Simula@on)	

30	

0% misdetection 

10% misdetection 

20% misdetection 

This includes increased false alarms and false negatives 



Preparing	Video	Clips:	Latent	Time	
•  3	fluents,	10	true	causes,	66	poten@al	causal	rela@ons	
•  Ac@ons	happens	8-10	@mes	
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Delayed	Effects:	Performance	vs.	TE	

•  TE	looks	at	the	marginal:	 	 	
	TE	=	P(ΔF|A)	–	P(ΔF|¬A).		
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Hierarchical:		
Performance	vs.	Hellinger	χ2	

33	



C-AOG	
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Hard	Example:	The	Monitor	
(Hidden	Variables)	

•  Power	bukon	–	turns	power	off	and	on	
•  Moving	mouse	or	touching	keyboard	wakes	screen	if	powered	

•  TE	and	χ2	are	low	for	this	example,	reflec@ng	the	difficulty	
35	

on 

a01 a71 a51 a61 

off 

a51 a01 a01 



Monitor:	What	Happened	
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REASONING	OVER	TIME	
From	Real	Data	
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Recall:	Example	Causal	Inference	
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Grounding	on	Detectors	

•  Terminal	Leaves	
–  Represent	features	for	detec@on	

•  Temporal	Rela@ons	
–  Links	connect	nodes	with	temporal	rela@onships	
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Parse	Graph	and	Energy	

•  Or-nodes	

•  And-nodes	

•  Temporal	Rela@ons	

•  Terminal	Leaves	

40	

Door fluent�

open�

A0�

closed�

a41�A0� a21�

push� pull� exit� unlock� pull�

Door fluent�

open�

unlock� pull�

Fluent�

 Action�

CausingAction �

Figure 3.2: The Causal And-Or Graph (left) and a parse graph (right). Each

causing action node shows an action from a high level of the hierarchy. Arrows

point from these actions (causes) to the fluent (e↵ect). Children of And-nodes are

grouped by arcs. A
0

represents non-action, causing a fluent to maintain status.

A parse graph (pg) from the Causal And-Or Graph is formed by making a

selection at the Or-nodes (e.g.,the thick red lines in Figure 3.1, or the left side

of Figure 3.2) and captures the causal reason that the fluent changed value at t

(causes indicated with arrows). A parse graph provides a causal explanation for

the video clip. For example, the parse graph in Figure 3.2 shows that the door is

open because an agent unlocked and pulled.

The best parse graph at t is given by selecting the best children per

P (pgt|V [t� �, t]) / P (pgt;⇥)
Y

l2L(pgt)

P (l|pgt) (3.3)

where L(pg) is the set of included terminal leaf nodes, including both actions and

fluents. This posterior (explained below) is a product of the prior defined over

the Causal And-Or Graph (with parameter vector ⇥) and the likelihood of all leaf

nodes for fluent and action detectors.

Further, the Or-nodes encode prior information on the di↵erent causes. Hu-

mans have an intuitive understanding of causation that they use to answer ques-

tions amid missing or hidden information. Without seeing what happened or

knowing what the circumstances are in the room, they can answer: Why is the
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CHAPTER 5

Inferring on the Causal And-Or Graph

In Equation 3.3 in Chapter 3, we introduced the probability for a parse graph at

t from the Causal And-Or Graph:

P (pgt|V [t� �, t]) / P (pgt;⇥)
Y

l2L(pgt)

P (l|pgt) (5.1)

where L(pg) is the set of included terminal leaf nodes, including both actions and

fluents. In this chapter, we develop this grounded probability model, extend the

Causal And-Or Graph to a model over time, and provide a Viterbi algorithm for

inference.

5.1 Inference of a Single Parse Graph: The Energies

The prior model for causality, P (pg;⇥), indicates the level of prior belief for what

the current fluent value is and the reason why the fluent took that value. We

calculate P (pg;⇥) with the energy, E(pg), where P (pg) / exp(�E(pg)). The final

score, E(pg), is recursively propagated to the top-level nodes in the Causal And-Or

Graph by the following rules:

Or-nodes. The energy of an Or-node, O, is

E(O) = max
v2ch(O)

(E(v) + h⇥v,�vi) (5.2)

where ch(O) represents the children. ⇥v indicates how likely each child is of caus-

ing the parent, and �v indicates which child is selected. h⇥v,�vi returns the prior
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probability of selecting that particular child. ⇥v is learned by maximum likeli-

hood estimation, giving the proportion of training examples that included child

�v. The learned ⇥v favors the status quo, returning that the fluent maintained

status a priori.

And-nodes. The energy of an And-node, A, with children ch(A), ensures

probabilities from all children are passed up to the top node, and is given by

E(A) =
X

v2ch(A)

E(v|A). (5.3)

Temporal relations. Top-level actions are detected as triads of sub-actions,

with each allowing a variable number of pose detections. Relations preserve the

temporal order of sub-actions. For relation R across nodes ṽ = vi1 , . . . , vik , E(R) =

 ṽ(ṽ), and is described further in Section 5.3.1.

Leaf nodes. Terminal leaf nodes anchor the Causal And-Or Graph to fea-

tures extracted from video. Using machine learning approaches, action and fluent

detection algorithms independently provide P (l|pg). The fluent energies, E(lF |F ),

and the action energies, E(lA|A), are calculated from the detected features, trained

separately with machine learning approaches as described in Section 5.3.1.

Intuitively, E(A) and E(O) recursively score a complete parse graph. Decom-

posing the recursion,

E(pgt|V [t��, t]) =
X

lF2LF (pg)

E(lF |F )+
X

lA2LA(pg)

E(lA|A)+
X

ṽ2R

 ṽ(ṽ)+
X

v2O(pg)

h⇥v,�vi ,

(5.4)

where LF (pg), LA(pg), R(pg), and O(pg) are the sets of included fluent leaves,

action leaves, relations and Or-nodes, respectively.

Detections of actions and fluents are jointly considered for pg where temporal

spacing between the two is within a pre-learned latent time, �, learned by opti-

mizing the hit rate as latency increases. Latent time between flipping a switch

and the light turning on is kept near instantaneous, whereas latent time between
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probability of selecting that particular child. ⇥v is learned by maximum likeli-

hood estimation, giving the proportion of training examples that included child

�v. The learned ⇥v favors the status quo, returning that the fluent maintained

status a priori.

And-nodes. The energy of an And-node, A, with children ch(A), ensures

probabilities from all children are passed up to the top node, and is given by

E(A) =
X

v2ch(A)

E(v|A). (5.3)

Temporal relations. Top-level actions are detected as triads of sub-actions,

with each allowing a variable number of pose detections. Relations preserve the

temporal order of sub-actions. For relation R across nodes ṽ = vi1 , . . . , vik , E(R) =

 ṽ(ṽ), and is described further in Section 5.3.1.

Leaf nodes. Terminal leaf nodes anchor the Causal And-Or Graph to fea-

tures extracted from video. Using machine learning approaches, action and fluent

detection algorithms independently provide P (l|pg). The fluent energies, E(lF |F ),

and the action energies, E(lA|A), are calculated from the detected features, trained

separately with machine learning approaches as described in Section 5.3.1.

Intuitively, E(A) and E(O) recursively score a complete parse graph. Decom-

posing the recursion,

E(pgt|V [t��, t]) =
X

lF2LF (pg)

E(lF |F )+
X

lA2LA(pg)

E(lA|A)+
X

ṽ2R

 ṽ(ṽ)+
X

v2O(pg)

h⇥v,�vi ,

(5.4)

where LF (pg), LA(pg), R(pg), and O(pg) are the sets of included fluent leaves,

action leaves, relations and Or-nodes, respectively.

Detections of actions and fluents are jointly considered for pg where temporal

spacing between the two is within a pre-learned latent time, �, learned by opti-

mizing the hit rate as latency increases. Latent time between flipping a switch

and the light turning on is kept near instantaneous, whereas latent time between
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probability of selecting that particular child. ⇥v is learned by maximum likeli-

hood estimation, giving the proportion of training examples that included child

�v. The learned ⇥v favors the status quo, returning that the fluent maintained

status a priori.

And-nodes. The energy of an And-node, A, with children ch(A), ensures

probabilities from all children are passed up to the top node, and is given by

E(A) =
X

v2ch(A)

E(v|A). (5.3)

Temporal relations. Top-level actions are detected as triads of sub-actions,

with each allowing a variable number of pose detections. Relations preserve the

temporal order of sub-actions. For relation R across nodes ṽ = vi1 , . . . , vik , E(R) =

 ṽ(ṽ), and is described further in Section 5.3.1.

Leaf nodes. Terminal leaf nodes anchor the Causal And-Or Graph to fea-

tures extracted from video. Using machine learning approaches, action and fluent

detection algorithms independently provide P (l|pg). The fluent energies, E(lF |F ),

and the action energies, E(lA|A), are calculated from the detected features, trained

separately with machine learning approaches as described in Section 5.3.1.

Intuitively, E(A) and E(O) recursively score a complete parse graph. Decom-

posing the recursion,

E(pgt|V [t��, t]) =
X

lF2LF (pg)

E(lF |F )+
X

lA2LA(pg)

E(lA|A)+
X

ṽ2R

 ṽ(ṽ)+
X

v2O(pg)

h⇥v,�vi ,

(5.4)

where LF (pg), LA(pg), R(pg), and O(pg) are the sets of included fluent leaves,

action leaves, relations and Or-nodes, respectively.

Detections of actions and fluents are jointly considered for pg where temporal

spacing between the two is within a pre-learned latent time, �, learned by opti-

mizing the hit rate as latency increases. Latent time between flipping a switch

and the light turning on is kept near instantaneous, whereas latent time between
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probability of selecting that particular child. ⇥v is learned by maximum likeli-

hood estimation, giving the proportion of training examples that included child

�v. The learned ⇥v favors the status quo, returning that the fluent maintained

status a priori.

And-nodes. The energy of an And-node, A, with children ch(A), ensures

probabilities from all children are passed up to the top node, and is given by

E(A) =
X

v2ch(A)

E(v|A). (5.3)

Temporal relations. Top-level actions are detected as triads of sub-actions,

with each allowing a variable number of pose detections. Relations preserve the

temporal order of sub-actions. For relation R across nodes ṽ = vi1 , . . . , vik ,

E(R) =  ṽ(ṽ), (5.4)

and is described further in Section 5.3.1.

Leaf nodes. Terminal leaf nodes anchor the Causal And-Or Graph to fea-

tures extracted from video. Using machine learning approaches, action and fluent

detection algorithms independently provide P (l|pg). The fluent energies, E(lF |F ),

and the action energies, E(lA|A), are calculated from the detected features, trained

separately with machine learning approaches as described in Section 5.3.1.

Intuitively, E(A) and E(O) recursively score a complete parse graph. Decom-

posing the recursion,

E(pgt|V [t��, t]) =
X

lF2LF (pg)

E(lF |F )+
X

lA2LA(pg)

E(lA|A)+
X

ṽ2R

 ṽ(ṽ)+
X

v2O(pg)

h⇥v,�vi ,

(5.5)

where LF (pg), LA(pg), R(pg), and O(pg) are the sets of included fluent leaves,

action leaves, relations and Or-nodes, respectively.

Detections of actions and fluents are jointly considered for pg where temporal

spacing between the two is within a pre-learned latent time, �, learned by opti-

mizing the hit rate as latency increases. Latent time between flipping a switch
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probability of selecting that particular child. ⇥v is learned by maximum likeli-

hood estimation, giving the proportion of training examples that included child

�v. The learned ⇥v favors the status quo, returning that the fluent maintained

status a priori.

And-nodes. The energy of an And-node, A, with children ch(A), ensures

probabilities from all children are passed up to the top node, and is given by

E(A) =
X

v2ch(A)

E(v|A). (5.3)

Temporal relations. Top-level actions are detected as triads of sub-actions,

with each allowing a variable number of pose detections. Relations preserve the

temporal order of sub-actions. For relation R across nodes ṽ = vi1 , . . . , vik ,
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mizing the hit rate as latency increases. Latent time between flipping a switch

52

probability of selecting that particular child. ⇥v is learned by maximum likeli-

hood estimation, giving the proportion of training examples that included child

�v. The learned ⇥v favors the status quo, returning that the fluent maintained

status a priori.

And-nodes. The energy of an And-node, A, with children ch(A), ensures

probabilities from all children are passed up to the top node, and is given by

E(A) =
X

v2ch(A)

E(v|A). (5.3)

Temporal relations. Top-level actions are detected as triads of sub-actions,

with each allowing a variable number of pose detections. Relations preserve the

temporal order of sub-actions. For relation R across nodes ṽ = vi1 , . . . , vik ,
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pushing an elevator call button and the elevator’s arrival a↵ords more leniency.

5.2 Reasoning over Time

Over time, a fluent takes a sequence of values, F
1

, . . . , Fn, and a series of actions

A
1

, . . . , Ak are performed. The Causal And-Or Graph models causal relationships

as the fluent value transitions from Ft�1

to Ft. In this section, we bind the

Causal And-Or Graphs sequentially to model a sequence of parse graphs, PG =

(pg
1

, . . . , pgn), explaining a longer video. Greedily connecting the pg yields two

concerns: (1) Subsequent parse graphs must be consistent, and (2) The process is

non-Markovian.

5.2.1 Consistency of Transitions between Parse Graphs

Subsequent pgt�1

and pgt from PG both contain the fluent value at t� 1. Com-

bining the local parse graphs pgt and pgt�1

shown in Figure 5.1 requires pg0 to

maintain consistency—the final value of the former must match the incoming value

of the latter. For example, multiple detections of flipping a light switch cannot

all cause the light to turn on unless the light is turned o↵ between them. The fol-

lowing state transition probability enforces consistency between subsequent parse

graphs:

P (pgt|pgt�1

) =

8
><

>:

0, if pgt�1

, pgt inconsistent

1, otherwise.
(5.5)

5.2.2 Non-Markovian Duration

Fluents such as the computer monitor are non-Markovian: rather than follow-

ing an exponential fall-o↵, the screensaver activates after a set amount of time

(usually 5 minute increments), following a predictable distribution such as shown
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5.2.3 Inference of the Sequential Parse Graphs

To accomodate the non-Markovian duration terms while enforcing consistency, we

use a hidden semi-Markov model, or variable-duration Markov model, [Murphy,

2002]. The graphical model shown in Figure 5.3 captures our assumed dependen-

cies. In this model, PGt from the Causal And-Or Graph is repeated for a duration

of ⌧t. Lt represents the sequence of observed fluents and actions under PGt. The

following conditional probability distributions govern the state transitions as well

as handle a counter for the duration:

P (PGt = pg|PGt�1

= pg0, ⌧t�1

= d) =

8
>>>>>>>>><

>>>>>>>>>:

�(pg, pg0), if d > 0

(remain in same state)

P (pg|pg0), if d = 0

(transition per Eq. 5.5).

(5.6)

P (⌧t = d0|PGt = pg) =

8
>>>>>>>>><

>>>>>>>>>:

�(d0, d� 1), if d > 0

(decrement)

P (⌧ |F ), if d > 0

(per Sec. 5.2.2).

(5.7)

PG1

⌧1

L1

PG2 PG3

⌧2 ⌧3

L2 L3

Figure 5.3: Hidden semi-Markov model

d and d0 count down the duration, and � is the Dirac delta function. The

optimal sequence explaining the video is given by

PG⇤, ⌧̃ ⇤ = argmax
PG,⌧̃

P (PG, ⌧̃ |V ), (5.8)
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of ⌧t. Lt represents the sequence of observed fluents and actions under PGt. The

following conditional probability distributions govern the state transitions as well

as handle a counter for the duration:

pg
1

, ...pg
1| {z }

⌧1

, pg
2

, ...pg
2| {z }

⌧2

, pg
3

, ...pg
3| {z }

⌧3

P (PGt = pg|PGt�1
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>>>>>>>>><
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�(d0, d� 1), if d > 0

(decrement)

P (⌧ |F ), if d = 0

(per Sec. 5.2.2).

(5.8)

d and d0 count down the duration, and � is the Dirac delta function. The

optimal sequence explaining the video is given by

PG⇤, ⌧̃ ⇤ = argmax
PG,⌧̃

P (PG, ⌧̃ |V ), (5.9)
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where ⌧̃ = (⌧
1

, . . . , ⌧n) represents the durations corresponding to elements of PG.

To calculate PG⇤ and ⌧̃ ⇤, we run a Viterbi algorithm. For the hidden semi-Markov

model, the Viterbi equations are

Vt(pg, ⌧) , max
pg0,⌧ 0

P (PGt = pg, ⌧t = ⌧, PGt�1

= pg0, ⌧t�1

= ⌧ 0, L
1:t = l

1:t)(5.9)

= P (lt�⌧+1:t|pg)max
pg0,⌧ 0

P (pg, |pg0)P (⌧ |F )Vt�⌧ (pg
0, ⌧ 0). (5.10)

where l
1:t is the subsequence emitted from 1 to t, consisting of action and fluent de-

tections. By defining Vt(pg) , max⌧ Vt(pg, ⌧), we can separate the maximization

over ⌧ from the state space:

Vt(pg) = max
⌧


P (lt�⌧+1:t|pg)P (⌧ |F )max

pg0
P (pg|pg0)Vt�⌧ (pg

0)

�
(5.11)

Derivations are provided in Section 5.5. By precomputing P (lt�⌧+1:t|pg) (see

action detection in Section 5.3.1), the complexity is O(T · |PG|2 · |⌧ |) where |⌧ | is

the maximum duration considered. While this model can be approximated by an

HMM with the addition of more nodes, complexity would increase.

To reduce complexity, we index t over detected change points (time points

with either a fluent change or action detection). In order to accommodate this

simplification, we assume at most one missed fluent change occurred between

them. This is su�cient because our considered fluents are binary: in particular, we

consider it possible that a light gets turned o↵ between two detections of turning

on, but we ignore the chance that there would be multiple missed detections of

on/o↵. If pgt�1

and pgt are inconsistent, we try to optimally insert a new change

point, t0 2 (t � 1, t) as shown in Figure 5.1, interpreting the inconsistency as

missed information. P (⌧ |F ) informs where to insert this change.

In general, all instances between these change points are best explained by the

non-action causal parse graph: the fluent maintains status because no change-

inducing action occurred. By jointly optimizing the parse graphs over time, we

avoid early decisions, allowing new information to revise previous conflicts.
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model, the Viterbi equations are
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P (PGt = pg, ⌧t = ⌧, PGt�1
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= ⌧ 0, L
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= P (lt�⌧+1:t|pg)max
pg0,⌧ 0

P (pg, |pg0)P (⌧ |F )Vt�⌧ (pg
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where l
1:t is the subsequence emitted from 1 to t, consisting of action and fluent de-

tections. By defining Vt(pg) , max⌧ Vt(pg, ⌧), we can separate the maximization

over ⌧ from the state space:

Vt(pg) = max
⌧


P (lt�⌧+1:t|pg)P (⌧ |F )max

pg0
P (pg|pg0)Vt�⌧ (pg

0)

�
(5.11)

Derivations are provided in Section 5.5. By precomputing P (lt�⌧+1:t|pg) (see

action detection in Section 5.3.1), the complexity is O(T · |PG|2 · |⌧ |) where |⌧ | is

the maximum duration considered. While this model can be approximated by an

HMM with the addition of more nodes, complexity would increase.

To reduce complexity, we index t over detected change points (time points

with either a fluent change or action detection). In order to accommodate this

simplification, we assume at most one missed fluent change occurred between

them. This is su�cient because our considered fluents are binary: in particular, we

consider it possible that a light gets turned o↵ between two detections of turning

on, but we ignore the chance that there would be multiple missed detections of

on/o↵. If pgt�1

and pgt are inconsistent, we try to optimally insert a new change

point, t0 2 (t � 1, t) as shown in Figure 5.1, interpreting the inconsistency as

missed information. P (⌧ |F ) informs where to insert this change.

In general, all instances between these change points are best explained by the

non-action causal parse graph: the fluent maintains status because no change-

inducing action occurred. By jointly optimizing the parse graphs over time, we

avoid early decisions, allowing new information to revise previous conflicts.
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but we ignore the chance that there would be multiple missed detections of on/off. If pgt�1 and pgt160

are inconsistent, we try to optimally insert a new change point, t0 2 (t� 1, t) as shown in Figure 4(a),161

interpreting the inconsistency as missed information. P (⌧ |F ) informs where to insert this change.162

In general, all instances between these change points are best explained by the non-action causal163

parse graph: the fluent maintains status because no change-inducing action occurred. By jointly164

optimizing the parse graphs over time, we avoid early decisions, allowing new information to revise165

previous conflicts.166

3 The causality video dataset and experiments167

This paper introduces a new video dataset (examples shown throughout) to evaluate reasoning values168

of hidden fluents and actions, captured with a Kinect camera in multiple scenes (data released upon169

publication). The 4D-Kinect data includes RGB images with depth information and extracted human170

skeletons. Table 1 lists the 13 fluents included in the data and summarizes the number scenes, clips,171

and frames of each. The average clip length is approximately 300 frames. The data separates out a172

small labeled training set, providing between 3 and 10 instances of each fluent change (average of 13173

frames per example), action (average of 98 frames per example), and causal relationship. Fluents174

with a small number of clips are case studies, and not included in summary results.175

Table 1: Dataset Included Action/Fluent Relationships

Object Fluent Values Causing Actions nScenes nClips nFrames

door open/closed open door, close door 4 50 10611
light on/off turn light on/off 4 34 16631
screen on/off use computer 4 179 56632
phone active/off use phone 5 68 30847
cup more/less/same fill cup, drink 3 48 16564
thirst thirsty/not drink 3 48 16564
waterstream on/off fill cup 3 40 14061
trash more/less/same throw trash out 4 11 2586
microwave open/closed,

running/not
open door, close door
turn on

1 3 4245

balloon full/empty blow up balloon 1 3 664
fridge open/closed open door, close door 1 2 2751
blackboard written on/

clear
write on board, erase 1 2 5205

faucet on/off turn faucet on/off 1 2 3013

3.1 Human annotation, detection and noise baselines, and experiment evaluation176

Human annotation. To evaluate results, we collected multiple human annotations by showing video177

clips showcasing actions, fluent changes, and non-actions. Participants provided an estimation on a178

scale of 0 to 100 for actions and fluent changes in each clip (e.g., Did the human dispense water to179

the cup? Is the cup more full, less full, or the same as in the previous clip? Is the human thirsty?).180

Between 1 and 7 clips were shown sequentially to create larger video sequences that included up to 4181

objects. Participants were encouraged to revise their answers when new information warranted.182

Protocol for evaluation. Because we expect reasoning to occur across the clips, we compare the183

computer to the nearest human response, that is the human whose response for the video sequence184

is closest to the computer’s as measured by the Manhattan distance. Hits are calculated when they185

exactly match the nearest human response for a single query. Ground truth positives are registered186

when the nearest human awarded more than 50% to a single answer.187

Baseline: Detection. We use machine learning algorithms for the bottom-up detection of fluent188

changes and actions.189

Fluents: To calculate E(lF |F ), we use a 3-level spatial pyramid to compute features with 1, 4, and 16190

blocks. People detected by the Kinect are removed. The feature vector contains the mean, maximum,191

6

Water on, Cup Filling 

Monitor On 

Action Detectable Action Ambiguous

!

!

Balloon Full 

Phone On 

Trash More Full Door Closed Light On Monitor On Microwave Open Fridge Closed 

Fluent Detectable Fluent Hidden Fluent Detectable Fluent Hidden



Detec@ng	Fluent	Changes	

•  3-level	spa@al	pyramid	
•  GentleBoost	
•  Non-max	suppression	

46	

Figure 5.4: Fluent detection. Fluents are extracted with spatial pyramids and

non-maximum suppression.

rameters were trained with a multi-class SVM [Chang and Lin, 2011]. Dynamic

programming beam search [Tillmann and Ney, 2003] runs over the video, retain-

ing only the top k performing action parse graphs. It is important to keep k

high as beam search runs the risk of omitting the true action detection; we used

k = 1000000. These values are propagated up the graph, providing a per-frame

probability of each action category, over which we slide windows of 50, 100, and

150 frames to recognize complete top-level actions at di↵erent scales. These top-

level action detections provide the “detection” baseline for actions and are used

to precompute P (lt�⌧+1:t|pg).

Non-maximum surround suppression provides fluent and action detections for

the “detection” baseline. The action and fluent detections exhibit missed and

incorrect detections typical in vision.

5.3.2 Baseline: Random Noise

“Noise” answers all queries as equally likely, and provides a comparison lower

bound.
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inducing action occurred. By jointly optimizing the parse graphs over time, we

avoid early decisions, allowing new information to revise previous conflicts.

5.3 Experiment 1: Causal Grammar vs. Detections

To evaluate reasoning values of hidden fluents and actions, we use video captured

with a Kinect in multiple scenes. The 4D-Kinect data includes RGB images with

depth information and extracted human skeletons. Table 5.1 lists the 13 fluents

included in the data and summarizes the number scenes, clips, and frames of each.

Some examples were shown in Figure 1.2. The average clip length is approximately

300 frames. The data separates out a small labeled training set, providing between

3 and 10 instances of each fluent change (average of 13 frames per example), action

(average of 98 frames per example), and causal relationship. Fluents with a small

number of clips are case studies, and not included in summary results.

5.3.1 Baseline: Bottom-Up Fluent and Action Detection

We use machine learning algorithms for the bottom-up detection of fluent changes

and actions.

Fluents: To calculate E(lF |F ), we use a 3-level spatial pyramid to compute

features with 1, 4, and 16 blocks as shown in Figure 5.4. People detected by the

Kinect are removed. The feature vector contains the mean, maximum, minimum,

and variance of intensity and depth changes between subsequent frames at each

level, using 6 window sizes from 5 to 30 frames. The GentleBoost algorithm

[Friedman et al., 2000] is trained on 3 to 7 examples of each fluent change. The

detectors for the light select one weak classifier: the mean of intensity change at

the highest level. Other fluent changes need more than 20 weak classifiers.

Actions: To compute E(lA|A), we calculate pose features from the relative

locations of each joint of the human skeleton as detected by the Kinect, shown
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Detec@ng	Ac@ons	

•  Beam	search	k	=	1,000,000	
•  Sliding	Window:	50,	100,	150	frames	
•  Input	to	Causal	Grammar:		
•  Detec@on	Baseline:	Non-max	suppression	
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Figure 5.5: Human poses and depth images (before and after a fluent change) for

actions as captured by the Kinect, together with sample frames.

5.3.3 Human Annotation

To evaluate results, we collected multiple human annotations by showing video

clips showcasing actions, fluent changes, and non-actions. Participants provided

an estimation on a scale of 0 to 100 for actions and fluent changes in each clip

(e.g., Did the human dispense water to the cup? Is the cup more full, less full,

or the same as in the previous clip? Is the human thirsty?). Between 1 and 7

clips were shown sequentially to create larger video sequences that included up

to 4 objects. Participants were encouraged to revise their answers when new

information warranted.

5.3.4 Protocol for Experiment Evaluation

Because we expect reasoning to occur across the clips, we compare the computer

to the nearest human response, that is the human whose response for the video

sequence is closest to the computer’s as measured by the Manhattan distance. Hits
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Figure 5.4: Fluent detection. Fluents are extracted with spatial pyramids and

non-maximum suppression.

in Figure 5.5. To calculate E(R), we bind the nodes in the relation by modeling

 (ṽ) = P (vn|vn�1

, dn�1

) (where dn�1

is the duration the pose has been classified

as vn�1

) with logistic regression over n, similar to [Wei et al., 2013]; model pa-

rameters were trained with a multi-class SVM [Chang and Lin, 2011]. Dynamic

programming beam search [Tillmann and Ney, 2003] runs over the video, retain-

ing only the top k performing action parse graphs. It is important to keep k

high as beam search runs the risk of omitting the true action detection; we used

k = 1000000. These values are propagated up the graph, providing a per-frame

probability of each action category, over which we slide windows of 50, 100, and

150 frames to recognize complete top-level actions at di↵erent scales. These top-

level action detections provide the “detection” baseline for actions and are used

to precompute P (lt�⌧+1:t|pg).

Non-maximum surround suppression provides fluent and action detections for

the “detection” baseline. The action and fluent detections exhibit missed and

incorrect detections typical in vision.
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inducing action occurred. By jointly optimizing the parse graphs over time, we

avoid early decisions, allowing new information to revise previous conflicts.

5.3 Experiment 1: Causal Grammar vs. Detections

To evaluate reasoning values of hidden fluents and actions, we use video captured

with a Kinect in multiple scenes. The 4D-Kinect data includes RGB images with

depth information and extracted human skeletons. Table 5.1 lists the 13 fluents

included in the data and summarizes the number scenes, clips, and frames of each.

Some examples were shown in Figure 1.2. The average clip length is approximately

300 frames. The data separates out a small labeled training set, providing between

3 and 10 instances of each fluent change (average of 13 frames per example), action

(average of 98 frames per example), and causal relationship. Fluents with a small

number of clips are case studies, and not included in summary results.

5.3.1 Baseline: Bottom-Up Fluent and Action Detection

We use machine learning algorithms for the bottom-up detection of fluent changes

and actions.

Fluents: To calculate E(lF |F ), we use a 3-level spatial pyramid to compute

features with 1, 4, and 16 blocks as shown in Figure 5.4. People detected by the

Kinect are removed. The feature vector contains the mean, maximum, minimum,

and variance of intensity and depth changes between subsequent frames at each

level, using 6 window sizes from 5 to 30 frames. The GentleBoost algorithm

[Friedman et al., 2000] is trained on 3 to 7 examples of each fluent change. The

detectors for the light select one weak classifier: the mean of intensity change at

the highest level. Other fluent changes need more than 20 weak classifiers.

Actions: To compute E(lA|A), we calculate pose features from the relative

locations of each joint of the human skeleton as detected by the Kinect, shown
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Human	
Annota@on	

•  EvaluaGon	
–  Hit:	Exactly	match	the	nearest	human	
–  Ground	truth	posi@ve:	Human	awarded	more	than	50	to	a	single	answer	
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Hit	Rates,	PR	

•  Noise	
–  All	responses	equally	likely	

•  Causal	Grammar	
–  AP	=	0.63, 	AR	=	0.69	

•  Detec@ons	
–  AP	=	0.29, 	AR	=	0.31	

1)  Causal	grammar	wins!	
2)  Non-zero	noise	
3)  Mismatch	on	hidden	fluents:	

Detec@on,	noise	(thirst)	
4)  Hidden	fluents	improve	

ac@ons	through	the	prior	
5)  Fluent	detec@ons	compete	

with	ac@on	detec@ons	
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(b) Screen and light fluents with human answers. The
dashed line separates the two query points for humans.

Figure 6: Results from fluent and action detectors, superimposed with causal reasoning results. Step
functions mark fluent changes–up for turning on, down for turning off.

Table 2: Hit rates for actions and fluents. Cup action is a combination of thirst and waterstream.
Italics mark the undetectable fluents.

trash door cup light screen thirst phone waterstream Average

A
ct

io
n Noise 0.10 0.00 N/A 0.00 0.12 0.03 0.00 0.00 0.04

Detection 0.62 0.45 N/A 0.57 0.61 0.41 0.33 0.38 0.48
Causal 0.87 0.58 N/A 0.80 0.67 0.76 0.40 0.88 0.71

Fl
ue

nt Noise 0.00 0.00 0.00 0.00 0.25 0.08 0.00 0.00 0.04
Detection 0.00 0.42 0.00 0.43 0.17 0.11 0.00 0.00 0.14

Causal 0.77 0.53 0.62 0.61 0.74 0.57 0.19 0.81 0.61

shown for the thirst fluent: “detection” had the same fluent answer as noise, but its answer is slightly234

higher because the action detections allowed it to be compared to a different human than “noise”.235

4 Discussion and summary236

In this paper, we have introduced a probability model for the sequential C-AOG, enabling joint237

inference of the values of hidden fluents and actions over time from video. This generative model238

connects cognition to vision over time with higher-level reasoning.239

Analogous to how humans infer actions and fluents given limited visual cues, joint inference with our240

Viterbi algorithm revised conclusions from early information, improved existing detections, and filled241

in those that were hidden or missed. While joint inference is not a cure-all for low detection rates,242

it is useful for mediating differences. Inference of hidden fluents (both as triggers and as effects)243

provides deeper cognition that can be used to understand, predict, and replicate human actions.244

Action ambiguities make detection challenging. While we trained actions with 4D Kinect data for245

generalizability, actions were still limited to the ways our system saw them. How people turn a light246

on might not look the same from one room or context to the next and yet the relation to the fluent is247

the same: when the light turns on, we match the words “turn the light on” to the observed action. Our248

method suggests a meaningful way to classify actions: by their causal effects.249
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Experiment	2:	Human	Variability	

•  Correc@ng	Misdetec@on	
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cause the action detections allowed it to be compared to a di↵erent human than

“noise”.

5.4 Experiment 2: Variability of Humans

To evaluate the variability of human answers, we use approximately 20 minutes

of video data that was captured using a Kinect in two scenes: a hallway and an

o�ce. Table 5.3 contains a summary of the fluents contained in the video, as well

as the values each fluent can take. These fluents are ambiguous in the video (e.g.,

light status (ambient light may be from a window or a light) or water stream

(resolution is not high enough to see it) in Figure 5.8).

5.4.1 Human Annotation

Through a website, participants (N = 15) were shown the test video which paused

at preset frames, e.g., those shown in Figure 5.8, and asked whether or not a fluent

changed, similar to Experiment 1. At each key frame, the participant was asked to

split 100 points across all possible values of each fluent, indicating his subjective

probabilities of the fluent values. Each participant was allowed to revise previous

judgments with information derived from subsequent frames.

485
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Figure 5.8: Sample of human judgment key frames.
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MDS	plots	
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Summary	

•  Learning	
–  Learning	causal	rela@ons	in	an	unsupervised	way,	linking	fluent	changes	to	

their	causing	ac@ons	

•  Representa@on	
–  Provided	representa@on	for	causal	knowledge	consistent	with	current	And-Or	

Graph	representa@ons:	The	Causal	And-Or	Graph	

•  Inference	
–  Through	the	extended	C-AOG,	provided	framework	for	reasoning	
–  Modeling	perceptual	causality	may	not	be	a	true	representa@on	of	the	world,	

but	it	is	useful.	
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Future	Work		
•  Integrate	learning	with	learning	in	other	domains	(spa@al,	temporal)	
•  Explore	learning	hidden	variables	

–  Explore	temporal	lag	
–  Confounding	

•  Expand	reasoning	
–  We	put	a	prior	on	why	things	happen	
–  We	need	a	prior	on	why	they	don’t	
–  More	on	intents/goals	
–  More	complicated	scenarios	

•  Other	paradigms	for	learning	
–  Lasso:	Constrain	the	lambdas	
–  Bayesian	prior	
–  Online	learning/dynamic	experimental	design	

•  Handle	new	“surprising”	informa@on	
•  Measure	variability/uncertainty	in	our	solu@ons	for	when	we	don’t	have	ground	

truth	
•  Learning:	Selec@on	analysis	
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Thank	you!	

Any	Ques@ons?	
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