Learning and Inferring Perceptual Causality from Video

Amy Fire UCLA

Overview

1. Learn the underlying causal relationships

- 2. Represent the causal relationships
- 3. Infer instances from video.
 - Explain why (and why not) events happened.
 - Fill in gaps from ST explanations.

Example Causal Inference

Causal Connections

WHAT HAS BEEN DONE

Causality

• D. Rubin, "The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials,"

Causal Diagrams

- Pearl Causality 2000. Reasoning through constraint satisfaction.
- Mueller Commonsense Reasoning 20. Reasoning through 1st order logic.

Context in Vision Research

Saberian, et al. 2014. Using Context to Improve Cascaded Pedestrian Detection

Traditional method our method our method

Yao, Fei-Fei 2010. Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities

Gupta, et al. 2009. Observing Human-Object Interactions: Using Spatial and Functional Compatibility for Recognition

Pham et al., 2015 Towards force sensing from vision: Observing hand-object interactions to infer manipulation forces

Causality in Vision Research

(e) Co-occurrence Matrix of Point-Processes

Prabhakar, et al. 2010. Temporal Causality for the Analysis of Visual Events

CASE^E: A Hierarchical Event Representation for the Analysis of Videos "Caravaggio pulled the chair therefore Michelangelo fell down."

> [**PRED**: pull, **AG**: Caravaggio, **OBJ**: chair, **CAUSE**: [**PRED**: fall, **D**: Michelangelo, **FAC**: down]]

Taylor, et al. 2015. Causal Video Object Segmentation from Persistence of Occlusions

No Benchmarks for Causality in Vision

UCF-101

platform tennis-serve

vault

javelin shot put

clean-jerk

snatch

HMDB-51. Human Motion recognition

UT-Interaction Data. High-level human interactions

ACCESSING CAUSALITY IN VISION THROUGH COGNITIVE SCIENCE

Perceptual Causality: Cognitive Science Agents Cause through Actions

Secret Agents : Inferences About Hidden Causes by 10- and 12-Month-Old Infants R. Saxe, J.B. Tenenbaum and S. Carey

Heuristic 1: Action -> Effect

Perceptual Causality Time between Cause and Effect is Short

Schlottmann and Shanks. 1992. Evidence for a distance between judged and perceived causality

Heuristic 2: $0 < \text{Time}(\text{Effect}) - \text{Time}(\text{Action}) < \delta$

Perceptual Causality: Causality is Learned through Correlation

	Effect present (e^+)	Effect absent (e^{-})
Cause present (c^+)	$N(e^{+}, c^{+})$	$N(e^-, c^+)$
Cause absent (c^{-})	$N(e^+,c^-)$	$N(e^-,c^-)$

Contingency table representation used in elemental causal induction

Griffiths and Tenenbaum. 2005. Structure and Strength in Causal Induction

Heuristic 3: Co-occurrence measures strength of perceptual causal relationships

LEARNING CAUSAL RELATIONSHIPS

Assumptions for Learning

- Detections (and hierarchies) are sufficient
 - No hidden actions
 - No confounders
- Causal faithfulness
- The Heuristics
 - Heuristic 1: Action \rightarrow Effect
 - Heuristic 2: 0 < Time(Effect) Time(Action) < δ
 - Heuristic 3: Co-occurrence measures strength of perceptual causal relationships

The Effects: Fluents (Time-Varying Statuses)

Fluent Detectable

Fluent Hidden

Causal Relations

 $\boldsymbol{\Omega}_{CR} = \boldsymbol{\Omega}_{A} \times \left\{ \Delta F \right\}$

Causal Relations

 $\boldsymbol{\Omega}_{CR} = \boldsymbol{\Omega}_{A} \times \left\{ \Delta F \right\}$

$$\mathbf{cr} = \left(c_0, c_1, c_2, c_3\right)$$

Statistics on Relations: Histogram

$$RF(\mathbf{cr}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{cr}(\mathbf{v}_i)$$

ΔF	A	cr	Current Model	Observed Data
0	0	\mathbf{cr}_0	h_0	f_0
0	1	\mathbf{cr}_1	h_1	f_1
1	0	\mathbf{cr}_2	h_2	f_2
1	1	\mathbf{cr}_3	h_3	f_3

Causing vs. Non-Causing Actions

Non-Causing Action

Information projection

 $KL(f \mid p) = KL(f \mid p_+) + KL(p_+ \mid p)$

DellaPietra, DellaPietra, Lafferty, 97 Zhu, Wu, Mumford, 97

Adding a Causal Relation to the Model

• Model Pursuit

$$p_0 \rightarrow p_1 \rightarrow \ldots \rightarrow p \rightarrow p_+ \rightarrow \ldots \rightarrow p_k \approx f$$
 (On ST-AOG)

$$p_{+}(pg) = \frac{1}{z_{+}} p(pg) \exp(-\langle \lambda_{+}, \mathbf{cr}_{+} \rangle)$$

- Part 1: Find parameters
 - Model formed by min *KL* ($p_+ || p$), matching statistics $E_{p_+}(\mathbf{cr}_+) = E_f(\mathbf{cr}_+)$
- Part 2: Pursue **cr**. max *KL* $(p_+ || p)$

DellaPietra, DellaPietra, Lafferty, 97 Zhu, Wu, Mumford, 97

Proposition 1: Model Parameters

- Suppose f denotes the frequencies of cr₊ as observed, and h denotes the expected frequencies from the probability model, p.
- If $p_+ = \min KL (p_+ || p)$, then p_+ is of the form

$$p_{+}(pg) = \frac{1}{z_{+}} p(pg) \exp(-\langle \lambda_{+}, \mathbf{cr}_{+} \rangle)$$

and

$$\lambda_{+,i} = \log\left(\frac{h_i}{h_0} \cdot \frac{f_0}{f_i}\right)$$

for i = 0, ..., 3.

Prop 2: Selecting a Causal Relation

- Suppose **cr**, **f**, **h**, *p*, and *p*₊ are as denoted before.
- Suppose further that cr₊ is selected to provide the maximum reduction in KL-divergence,

$$\mathbf{cr}_{+} = \operatorname*{argmax}_{\mathbf{cr}} \left(KL(f \parallel p) - KL(f \parallel p_{+}) \right)$$

• Then

$$\mathbf{cr}_{+} = \underset{\mathbf{cr}}{\operatorname{argmax}} KL(p_{+} \parallel p) = \underset{\mathbf{cr}}{\operatorname{argmax}} KL(\mathbf{f} \parallel \mathbf{h})$$

Selection from ST-AOG

 Suppose parent Or-node A has children A₁, ..., A_n, with A_i as the true cause. Then

$$\mathrm{KL}(\mathbf{f}_{A} \parallel \mathbf{h}_{A}) \leq \mathrm{KL}(\mathbf{f}_{A_{i}} \parallel \mathbf{h}_{A_{i}})$$

and

$$\mathbf{cr}_{A_i} = \underset{\mathbf{cr}_A, \mathbf{cr}_{A_1}, \dots, \mathbf{cr}_{A_n}}{\operatorname{argmax}} KL(\mathbf{f} \parallel \mathbf{h})$$

• Suppose parent **And-node** *A* has children *A*₁, ..., *A*_n, with *A*_i as the true cause. Then

$$\mathrm{KL}\left(\mathbf{f}_{A} \parallel \mathbf{h}_{A}\right) \geq \mathrm{KL}\left(\mathbf{f}_{A_{i}} \parallel \mathbf{h}_{A_{i}}\right)$$

and

$$\mathbf{cr}_{A} = \underset{\mathbf{cr}_{A},\mathbf{cr}_{A_{1}},\ldots,\mathbf{cr}_{A_{n}}}{\operatorname{argmax}} KL(\mathbf{f} \parallel \mathbf{h})$$

Office Experiment

- 5 Scenes
 - Office
 - 3 Door ways (key lock, passcode lock, non-locking)
 - Elevator
- Actions happen 10-20 times; 19 types of low-level actions

Information Gains for the Door

	$C {\rightarrow} O$	$O {\rightarrow} C$	$O {\rightarrow} C$	$C {\rightarrow} O$	$O{\rightarrow}C$	$C{\rightarrow}O$	$O{\rightarrow}C$	$C {\rightarrow} O$	$O{\rightarrow}C$	$C{\rightarrow}O$	$O{\rightarrow}C$	$C{\rightarrow}O$	$O{\rightarrow}C$
	A_3	A_4	A_2	A_1	A_6	A_6	A_7	A_7	A_8	A_8	A_{10}	A_{10}	A_5
k = 1	0.2161	0.1812	0.1668	0.1344	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0170	0.0170	0.0155
k = 2	0.0000	0.1812	0.1668	0.1344	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0170	0.0170	0.0155
k = 3	0.0000	0.0000	0.1668	0.1344	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0170	0.0170	0.0155
k = 4	0.0000	0.0000	0.0000	0.1344	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0170	0.0170	0.0155
k = 5	0.0000	0.0000	0.0000	0.0000	0.0185	0.0185	0.0185	0.0185	0.0185	0.0185	0.0170	0.0170	0.0155
k = 6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0264	0.0185	0.0185	0.0185	0.0185	0.0170	0.0170	0.0155
k=7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0185	0.0185	0.0185	0.0185	0.0170	0.0170	0.0155
k = 8	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0264	0.0185	0.0185	0.0170	0.0170	0.0155
k = 9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0185	0.0185	0.0170	0.0170	0.0155
k = 10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0264	0.0170	0.0170	0.0155
k = 11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0170	0.0170	0.0155
k = 12	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0244	0.0155
k = 13	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0155

Increasing Misdetections (Simulation)

Preparing Video Clips: Latent Time

- 3 fluents, 10 true causes, 66 potential causal relations
- Actions happens 8-10 times

Delayed Effects: Performance vs. TE

• TE looks at the marginal: TE = $P(\Delta F | A) - P(\Delta F | \neg A)$.

Hierarchical: Performance vs. Hellinger χ^2

C-AOG

$$P_{C}(pg | V) = P_{STC}(pg | F, V) \propto \exp(-E_{C}(pg | V))$$
$$E_{C}(pg | V) = E_{ST}(pg | V) + \sum_{a \in CR(pg)} \lambda_{a}(w(a))$$

Hard Example: The Monitor

(Hidden Variables)

- Power button turns power off and on
- Moving mouse or touching keyboard wakes screen if powered

• TE and χ^2 are low for this example, reflecting the difficulty

Monitor: What Happened

From Real Data

REASONING OVER TIME

Recall: Example Causal Inference

Grounding on Detectors

- Terminal Leaves
 - Represent features for detection
- Temporal Relations
 - Links connect nodes with temporal relationships

Parse Graph and Energy

$$P(pg_t|V[t-\delta,t]) \propto P(pg_t;\Theta) \prod_{l \in L(pg_t)} P(l|pg_t)$$

• Or-nodes

•

And-nodes

 $\mathcal{E}(A) = \sum_{v \in ch(A)} \mathcal{E}(v|A)$

 $\mathcal{E}(O) = \max_{v \in ch(O)} \left(\mathcal{E}(v) + \langle \Theta_v, \lambda_v \rangle \right)$

- Temporal Relations $\tilde{v} = v_{i_1}, \dots, v_{i_k}$ $\mathcal{E}(R) = \psi_{\tilde{v}}(\tilde{v})$
- Terminal Leaves $\mathcal{E}(l_F|F)$ $\mathcal{E}(l_A|A)$

$$\mathcal{E}(pg_t|V[t-\delta,t]) = \sum_{l_F \in L_F(pg)} \mathcal{E}(l_F|F) + \sum_{l_A \in L_A(pg)} \mathcal{E}(l_A|A) + \sum_{\tilde{v} \in R} \psi_{\tilde{v}}(\tilde{v}) + \sum_{v \in O(pg)} \langle \Theta_v, \lambda_v \rangle$$

Issue Over Time: Consistency

$$P(pg_t|pg_{t-1}) = \begin{cases} 0, \text{ if } pg_{t-1}, pg_t \text{ inconsistent} \\ 1, \text{ otherwise.} \end{cases}$$

Issue Over Time: Non-Markovian Duration

Hidden Semi-Markov Model

 $\underbrace{pg_1, \dots pg_1}, \underbrace{pg_2, \dots pg_2}, \underbrace{pg_3, \dots pg_3}$ au_2 au_1 au_3

$$P(PG_{t} = pg|PG_{t-1} = pg', \tau_{t-1} = d) = \begin{cases} \delta(pg, pg'), \text{ if } d > 0 \\ (\text{remain in same state}) \\ P(pg|pg'), \text{ if } d = 0 \\ (\text{transition per Eq. 5.6}) \end{cases}$$

$$P(\tau_{t} = d'|PG_{t} = pg) = \begin{cases} \delta(d', d-1), \text{ if } d > 0 \\ (\text{decrement}) \\ P(\tau|F), \text{ if } d = 0 \\ (\text{per Sec. 5.2.2}). \end{cases}$$

Murphy, 2002. HSMM 43

• Viterbi equation

$$V_t(pg,\tau) \triangleq \max_{pg',\tau'} P(PG_t = pg, \tau_t = \tau, PG_{t-1} = pg', \tau_{t-1} = \tau', L_{1:t} = l_{1:t})$$

= $P(l_{t-\tau+1:t}|pg) \max_{pg',\tau'} P(pg, |pg')P(\tau|F)V_{t-\tau}(pg', \tau').$

• Remove τ from state space

$$V_t(pg) = \max_{\tau} \left[P\left(l_{t-\tau+1:t}|pg\right) P\left(\tau|F\right) \max_{pg'} P\left(pg|pg'\right) V_{t-\tau}(pg') \right]$$

- Complexity $O(T \cdot |PG|^2 \cdot |\tau|)$
 - Precompute $P(l_{t-\tau+1:t}|pg)$

New Causal Video Data

- 4D Data
- nFrames/clip ~ 300
- Training
 - 3-10 of each

Object	Fluent Values	Causing Actions	nScenes	nClips	nFrames
door	open/closed	open door, close door	4	50	10611
light	on/off	turn light on/off	4	34	16631
screen	on/off	use computer	4	179	56632
phone	active/off	use phone	5	68	30847
cup	more/less/same	fill cup, drink	3	48	16564
thirst	thirsty/not	drink	3	48	16564
waterstream	on/off	fill cup	3	40	14061
trash	more/less/same	throw trash out	4	11	2586
microwave	open/closed, running/not	open door, close door turn on	1	3	4245
balloon	full/empty	blow up balloon	1	3	664
fridge	open/closed	open door, close door	1	2	2751
blackboard	written on/ clear	write on board, erase	1	2	5205
faucet	on/off	turn faucet on/off	1	2	3013

Action Ambiguous Fluent Detectable Action Detectable Fluent Hidden Fluent Detectable Fluent Hidden Water on, Cup Filling Л Phone On Л Π Л Trash More Full Microwave Open Fridge Closed Monitor On Light On Door Closed Balloon Full Monitor On

Detecting Fluent Changes

- 3-level spatial pyramid
- GentleBoost
- Non-max suppression

 $\mathcal{E}(l_F|F)$

- Beam search k = 1,000,000
- Sliding Window: 50, 100, 150 frames
- Input to Causal Grammar: $\mathcal{E}(l_A|A)$
- Detection Baseline: Non-max suppression

Wei et al., Modeling 4D Human-Object Interactions for Event and Object Recognition

Human Annotation						0:00				
<u>Fluent/Action</u> Phone Status	During Segme became active (started call) became inactive (ended call) stayed active/in call stayed inactive/off	nt 1: 100 0 0 0		Each block must	<u>Fluent/Action</u> Phone Status	During Segme became active (started call) became inactive	ent 2: a 100	During Segme became active (started call) became inactive	ent 1: 100	
Phone Ringing	phone rang (during this segment) phone did not ring	20 80	-	sum to 100		(ended call) stayed active/in call stayed inactive/off call		(ended call) stayed active/in call stayed inactive/off call	0	responses if needed
Agent Phone Action	agent used phone agent did not use phone	0			Phone Ringing	phone rang (during this segment) phone did not ring	100	phone rang (during this segment) phone did not ring	20	

• Evaluation

- Hit: Exactly match the nearest human
- Ground truth positive: Human awarded more than 50 to a single answer

Hit Rates, PR

		trash	door	cup	light	screen	thirst	phone	waterstream	Average
Action	Noise	0.10	0.00	N/A	0.00	0.12	0.03	0.00	0.00	0.04
	Detection	0.62	0.45	N/A	0.57	0.61	0.41	0.33	0.38	0.48
	Causal	0.87	0.58	N/A	0.80	0.67	0.76	0.40	0.88	0.71
Fluent	Noise	0.00	0.00	0.00	0.00	0.25	0.08	0.00	0.00	0.04
	Detection	0.00	0.42	0.00	0.43	0.17	0.11	0.00	0.00	0.14
	Causal	0.77	0.53	0.62	0.61	0.74	0.57	0.19	0.81	0.61

- Noise
 - All responses equally likely
- Causal Grammar
 - AP = 0.63, AR = 0.69
- Detections
 - AP = 0.29, AR = 0.31

- 1) Causal grammar wins!
- 2) Non-zero noise
- 3) Mismatch on hidden fluents: Detection, noise (thirst)
- 4) Hidden fluents improve actions through the prior
- 5) Fluent detections compete with action detections

Experiment 2: Human Variability

Frame Number (not to scale)

• Correcting Misdetection

MDS plots

Summary

- Learning
 - Learning causal relations in an unsupervised way, linking fluent changes to their causing actions
- Representation
 - Provided representation for causal knowledge consistent with current And-Or Graph representations: The Causal And-Or Graph
- Inference
 - Through the extended C-AOG, provided framework for reasoning
 - Modeling perceptual causality may not be a true representation of the world, but it is useful.

Future Work

- Integrate learning with learning in other domains (spatial, temporal)
- Explore learning hidden variables
 - Explore temporal lag
 - Confounding
- Expand reasoning
 - We put a prior on why things happen
 - We need a prior on why they don't
 - More on intents/goals
 - More complicated scenarios
- Other paradigms for learning
 - Lasso: Constrain the lambdas
 - Bayesian prior
 - Online learning/dynamic experimental design
 - Handle new "surprising" information
 - Measure variability/uncertainty in our solutions for when we don't have ground truth
 - Learning: Selection analysis

Thank you!

Any Questions?