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EXPERIMENT 1: LEARNING CAUSALITY

INTRODUCTION

Goal: Computational model for the learning of |
causality from raw video 1. == Goal: Learn causal relationships between fluent changes and actions

Motivation: Model inference processes Methods:

120 minutes of video in office and hallway scenes

21 action categories, 8-20 instances of each

Perfect action/fluent detection demonstrates learning

Ground truth links known causing actions to their fluent effects

1. Answer why events occur

2. Correct misdetections and infer hid-
den/ambiguous objects/actions

3. Infer triggers, goals, and intents

Results: Correctly matching causal relations
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EXPERIMENT 2: INFERENCE EXPERIMENT

Goal: Validate our model in the long-term reasoning task of inferring hidden fluent values

Pairing cause and effect: Fluent changes are matched with corresponding

causing actions. In the absence of change-inducing actions, fluent values Stimuli: List of fluents
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