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INTRODUCTION

Goal: Computational model for the learning of
causality from raw video

Motivation: Model inference processes

1. Answer why events occur
2. Correct misdetections and infer hid-

den/ambiguous objects/actions
3. Infer triggers, goals, and intents
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PERCEPTUAL CAUSALITY

Infants use heuristics in judging causal relationships:

1. Agentive actions are causes
2. Measure co-occurrence between action Ai and effect ∆F j

cr :

∆F j Present ∆F j Absent

Ai Present f0 f1
Ai Absent f2 f3

3. Temporal lag between the two is short
Time(Action)− Time(Effect)< ε

4. Cause precedes effect
Time(Action)− Time(Effect)> 0

To learn perceptual causality in video, we restrict co-occurrence of detected
events and effects to these heuristics.

A GRAMMAR MODEL FOR CAUSALITY

Effects: Fluents are time-varying statuses of objects.
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Causes: Actions suggest an And-Or representation.
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Pairing cause and effect: Fluent changes are matched with corresponding
causing actions. In the absence of change-inducing actions, fluent values
are causally attributed to the inertial action, a01.

The Causal And-Or Graph
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A Parse Graph:
pg is a selection
on the Or-nodes.
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Probability on the C-AOG: Given the video I ,

P(pgC|I)
︸ ︷︷ ︸

posterior

= P(A1, . . .An|I)P(∆F1, . . . ,∆Fm|I)
︸ ︷︷ ︸

likelihood

∏

v∈V Or
C

P(w(v))
︸ ︷︷ ︸

prior

• likelihood: the detection probabilities
• V Or

C : the set of included Or-nodes in the causal explanation
• w(v): the selected Or-branch
• prior: the switch probability on the Or-nodes

Learning the C-AOG by model pursuit: Incrementally pursue a model,
adding a contingency table at each iteration by information projection.
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KL f || p( ) =KL f || p+( )+KL p+ || p( )

Proposition: Add the best action-fluent pair (Ai ,∆F j):

cr∗ = argmax
cr

(Information Gain) = argmax
cr

(KL(f||h)) ,

where f is the observed frequencies of cr and h is the expected contingency
table predicted by the model p in the current iteration

EXPERIMENT 1: LEARNING CAUSALITY

Goal: Learn causal relationships between fluent changes and actions

Methods:

• 120 minutes of video in office and hallway scenes
• 21 action categories, 8-20 instances of each
• Perfect action/fluent detection demonstrates learning
• Ground truth links known causing actions to their fluent effects

experiment1 
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Results: Correctly matching causal relations

Information gains for causal
relations in the order pursued,
separated by fluent. Green cir-
cles label causes.

Door Light Monitor

Comparisons:
Hierarchical Example: The Locked Door Confounded Example: The Elevator

Our method acquires true
causes before non-causes,
outperforming Hellinger’s
Chi-Square and Causal
Power.

Noisy Data: Increasing Misdetections Discussion:

• Our method matches human perceptions in the presence of multiple confusing events.
• In the presence of confounders (the monitor), our method appropriately reduces clarity in the

causal relationships.
• Our method incorporates dependencies in action hierarchies (the locked door).
• Our method places importance on quantity of hits (the elevator), accommodating the ambi-

guity important to vision.
• Clean detections are important to being able to learn causality.
• Limitation: Our methods are limited to pre-specified action and fluent categories so that ap-

propriate detectors can be trained.

EXPERIMENT 2: INFERENCE EXPERIMENT

Goal: Validate our model in the long-term reasoning task of inferring hidden fluent values

Stimuli:

• 20 minutes of hallway and office video
• 15 volunteer participants were shown the test video which paused at preset frames surround-

ing fluent changes or causing actions
• Fluents shown are either ambiguous or completely hidden

485

· · ·

800 2500 2575 5535 6915

· · ·

Frame Number (not to scale)

List of fluents
Computer: ASLEEP/AWAKE

Monitor Display: ON/OFF

Monitor Power: ON/OFF

Cup: MORE/LESS/SAME

Water Stream: ON/OFF

Light: ON/OFF

Phone: ACTIVE/STANDBY

Trash Can: MORE/LESS/SAME

Agent : THIRSTY/SATIATED

Agent: HAS_TRASH/NOT

Reference estimates:

• Baseline: 50/50

• Computer (our method): From video, actions are parsed using the
Temporal And-Or Graph (right) and fluent changes are extracted us-
ing GentleBoost (below). These outputs are parsed with the Causal
And-Or Graph.
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Results:

• MDS plots of fluent value estimates.
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(a) Hallway Dataset
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(b) Office Dataset
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(a) Hallway Dataset
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(b) Office Dataset

Correcting Spatio-Temporal Detections:

Fig:lightdetections 
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(not drawn to scale) 
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Discussion:

• The Causal And-Or Graph smooths over misdetections in a way that is consistent
with human responses

• The Causal And-Or Graph outperforms baseline
• Variation in human responses occurs due to different initializations and different

variability thresholds


