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Ingredients of Game Theory

m Competitive situations with at least 2 players who have
decisions to make (strategies) with preferences for

outcomes
m An Example: The Duopoly

Two firms with similar products (Coke v. Pepsi) compete over
business

Firms choose price
Quantity determined by demand; Yields profit: P*Q

Firms prefer higher profit

m Solution Concept — Nash Equilibrium

A strategy for each player; given what the other players are
playing, no other strategy will yield a higher payoff

These exist in single shot games
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Evolutionary Game Theory

m LARGE population of players each programmed to a
strategy

m Players drawn from big pot randomly to play against
each other

m Replicator Dynamics
A selection mechanism
Darwinian “Survival of the Fittest”
Individual fithess is measured by payoffs
Pure strategies are copied from parent to child flawlessly
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How Populations are Described

m Given: Initial Mix of the Population

For continuous case — Density function u
m [0,1] = space of strategies
m U>0, jj)u(x)dx=1

jju(x)dx Is the probability x in [a,b] is played
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Payoff Structures

m Payoff against another player: P(x,y), Q(x,y)
m Payoff against a population:
1
P (x|\) = / P(x,y)\(y)dy

/0

m Fitness of a population

-1

F(puef Ae) = / P (x| \)py(2)dx

J 0
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The Replicator Dynamics

m [he Single-Population Replicator Dynamics

WD) () (P (al) = F )

m [he Two-Population Replicator Dynamics:

Oy (x §
M) — ) (P (aN) — Fi(plA)

(‘)z@ = M) Q" (ypee) — G(Ne|pee))
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Existing Results

m Given a single population with concave
payoff function

m Given conditions that ensure dynamics
remain in the interior (0,1)

m Under the replicator dynamics, the
population will converge to the Dirac mass
at the unique interior Nash equilibrium
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Extending Results to Two
Populations

m Assumptions

Payoff functions that are concave in decision
maker’ s variable

Boundary conditions to ensure dynamics
remains in (0,1) X (0,1)

m [he populations will each concentrate
their mass to a unique interior peak
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Extending Results...

m Let ¢(t) and n(t) be the unique peaks of p,(x) and A(y) respectively
m Then Peak Behavior is described by:

d& (1) _ —dj (E[A)

(2 (B%e) + S o)
dn(t) —dﬁ, (1l41)

U (2 (522) + o 5 (vl )dT)y:,,
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The Linear Quadratic Case

m Payoff for p(x): P(x,y) = x(a-bx+cy)
m Payoff for A(y): Q(x,y) = y(d-ey+fx)

d&(1) a — 20 + cEY dn(t)  d—2en+ fEX

it K,.(€) — 20 it K(n) — 2¢t

m EY = Expectation of A; EX = Expectation of p

EY->n, EX->¢ as tincreases

m K, (§), K, (n) are functions of g, n respectively
(1)K, (5), (1/t) K, (n) -> 0 as t increases



m Change variable to Nash equilibrium

€ - cd+2ea e 2bd+a f
N deb—cf IN = deb—cf
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an' 1 2en’ — f(§ +o.(1))
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m Change variable: s =In t

0 _ 208 —cf +¢,(e”) O _ 2en — f(€+ du(e”))
= = - : and — = -
Js e~ IC, () + N ) — 2b Js e SK\(& + &n) — 2¢

m Reduces to linear system in the limit: < = Ax

-1 £ ¢

b - | ,.
2e —1 ]7’



m \We can write our system in the form <4 = Ax + G(x, s)
where

2b¢" —cn/
Yo o\ e SK,(n+nn)—2b A
(7(.1 . .S) — o N — J‘Ll
2en' —f¢
e SK\(§'+En)—2e"

m GG(Xx,s) converges to 0

m \When the eigenvalues of A have negative real
parts, we can conclude that the solutions to our
system are asymptotically stable.

m Namely, the peak will converge to the Nash
equilibrium



